Skip to main content
Log in

Understanding Developmental Pharmacodynamics

Importance for Drug Development and Clinical Practice

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Developmental pharmacodynamics is the study of age-related maturation of the structure and function of biologic systems and how this affects response to pharmacotherapy. This may manifest as a change in the potency, efficacy, or therapeutic range of a drug. The paucity of studies exploring developmental pharmacodynamics reflects the lack of suitable juvenile animal models and the ethical and practical constraints of conducting studies in children. However, where data from animal models are available, valuable insight has been gained into how response to therapy can change through the course of development. For example, animal neurodevelopmental models have revealed that temporal differences in the maturation of norepinephrine and serotonin neurotransmitter systems may explain the lack of efficacy of some anti-depressants in children. GABAA receptors that switch from an excitatory to inhibitory mode during early development help to explain paradoxical seizures experienced by infants after exposure to benzodiazepines. The increased sensitivity of neonates to morphine may be due to increased postnatal expression of the μ opioid receptor.

An age dependency to the pharmacokinetic-pharmacodynamic relationship has also been found in some clinical studies. For example, immunosuppressive effects of ciclosporin (cyclosporine) revealed markedly enhanced sensitivity in infants compared with older children and adults. A study of sotalol in the treatment of children with supraventricular tachycardia showed that neonates exhibited a higher sensitivity towards QTc interval prolongation compared with older children. However, the data are limited and efforts to increase and establish data on developmental pharmacodynamics are necessary to achieve optimal drug therapy in children and to ensure long-term success of pediatric drug development. This requires a dual ‘bottom up’ (ontogeny knowledge driven) and ‘top down’ (pediatric pharmacokinetic-pharmacodynamic studies) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Holford NHG, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 1981; 6: 429–53

    Article  PubMed  CAS  Google Scholar 

  2. European Medicines Agency [online]. Available from URL: http://www.ema.europa.eu/htms/human/paediatrics/introduction.htm [Accessed 2010 Mar 31]

  3. European Medicines Agency. ICH Topic E11: clinical investigation of medicinal products in the paediatric population. Step 5 (CPMP/ICH/2711/99) [online]. Available from URL: http://www.ema.europa.eu/pdfs/human/ich/271199en.pdf [Accessed 2010 Mar 31]

  4. Stephenson T. How children’s responses to drugs differ from adults. Br J Clin Pharmacol 2005; 59(6): 67–673

    Article  Google Scholar 

  5. Bruckner JV. Differences in sensitivity of children and adults to chemical toxicity: the NAS Panel Report. Regul Toxicol Pharmacol 2000; 31: 280–5

    Article  PubMed  CAS  Google Scholar 

  6. Keepers G, Clappison V, Casey D. Initial anticholinergic prophylaxis for acute neuroleptic induced extrapyramidal syndromes. Arch Gen Psychiatry 1983; 40: 1113–7

    Article  PubMed  CAS  Google Scholar 

  7. Campbell M, Adams P, Perry R, et al. Tardive and withdrawal dyskinesia in autistic children: a prospective study. Psychopharmacol Bull 1988; 24: 251–5

    PubMed  CAS  Google Scholar 

  8. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190: S8–21

    Article  PubMed  CAS  Google Scholar 

  9. Schou AJ. Knemometry for assessment of growth suppressive effects of exogenous glucocorticoids. Curr Pediatr Rev 2006; 2(1): 77–83

    Article  CAS  Google Scholar 

  10. Tobin JR. Paradoxical effects of midazolam in the very young. Anesthesiology 2008; 108: 6–7

    Article  PubMed  Google Scholar 

  11. Bylund DB, Reed AL. Childhood and adolescent depression: why do children and adults respond differently to antidepressant drugs? Neurochem Int 2001; 51: 246–53

    Article  Google Scholar 

  12. Murrin LC, Sanders JD, Bylund DB. Comparison of the maturation of the adrenergic and serotonergic neurotransmitter systems in the brain: implication for differential drug effects on juveniles and adults. Biochem Pharmacol 2007; 73: 1225–36

    Article  PubMed  CAS  Google Scholar 

  13. Koch SC, Fitzgerald M, Hathway GJ. Midazolam potentiates nociceptive behaviour, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology 2008; 108: 122–9

    Article  PubMed  CAS  Google Scholar 

  14. Chugani DC, Muzik O, Juhasz C, et al. Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol 2001; 49: 618–26

    Article  PubMed  CAS  Google Scholar 

  15. Brooks-Kayal AR, Pritchett DB. Developmental changes in human γ-aminobutyric acidA receptor subunit composition. Ann Neurol 1993; 34: 687–93

    Article  PubMed  CAS  Google Scholar 

  16. Kretz FJ, Reimann B. Ontogeny of receptors relevant to anaesthesiology. Curr Opin Anaesthesiol 2003; 16: 281–4

    Article  PubMed  Google Scholar 

  17. Nandi R, Fitzgerald M. Opioid analgesia in the newborn. Eur J Pain 2005; 9(2): 105–8

    Article  PubMed  CAS  Google Scholar 

  18. Nandi R, Beacham D, Middleton J, et al. The functional expression of mu opioid receptors on sensory neurons is developmentally regulated; morphine analgesia is less selective in the neonate. Pain 2004; 111(1–2): 38–50

    Article  PubMed  CAS  Google Scholar 

  19. Rahman W, Dashwood MR, Fitzgerald M, et al. Postnatal development of multiple opioid receptors in the spinal cord and development of spinal morphine analgesia. Devel Brian Res 1998; 108: 239–54

    Article  CAS  Google Scholar 

  20. Holladay SD, Smialowicz RJ. Development of the murine and human immune system: differential effects of immunotixicants depend on time of exposure. Environ Health Perspect 2000; 108Suppl. 3: 463–73

    PubMed  CAS  Google Scholar 

  21. Teig N, Moses D, Gieseler S, et al. Age-related changes in human blood dendritic cell subpopulations. Scand J Immunol 2002; 55: 453–7

    Article  PubMed  CAS  Google Scholar 

  22. Clapp DW. Developmental regulation of the immune system. Semin Perinatol 2006; 30: 69–72

    Article  PubMed  Google Scholar 

  23. Holsapple MP, Paustenbach DJ, Charnley G, et al. Symposium summary: children’s health risk: what’s so special about the developing immune system? Toxicol Appl Pharmacol 2004; 199: 61–70

    Article  PubMed  CAS  Google Scholar 

  24. Kavelaars A, Cats B, Visser GHA, et al. Ontogeny of the response of human peripheral blood T cells to glucocorticoids. Brain Behav Immun 1996; 10:288–97

    Article  PubMed  CAS  Google Scholar 

  25. Marshall JD, Kearns GL. Developmental pharmacodynamics of cyclosporine. Clin Pharmacol Ther 1999; 66(1): 66–75

    Article  PubMed  CAS  Google Scholar 

  26. Auslender M. New drugs in the treatment of heart failure. Prog Pediatr Cardiol 2000; 12: 119–24

    Article  PubMed  Google Scholar 

  27. Grenier MA, Fioravanti J, Truesdell SC, et al. Angiotensin-converting enzyme inhibitor therapy for ventricular dysfunction in infants, children and adolescents: a review. Prog Pediatr Cardiol 2000 Nov 4; 12(1): 91–111

    Article  PubMed  Google Scholar 

  28. Läer S, Elshoff JP, Meibohm B, et al. Development of a safe and effective pediatric dosing regimen for sotalol based on population pharmacokinetics and pharmacodynamics in children with supraventricular tachycardia. J Am Coll Cardiol 2005; 46(7): 1322–30

    Article  PubMed  Google Scholar 

  29. Massicotte P, Leaker M, Marzinotto V, et al. Enhanced thrombin regulation during warfarin therapy in children compared to adults. Thromb Haemost 1998; 80: 570–4

    PubMed  CAS  Google Scholar 

  30. Takahashi H, Ishikawa S, Nomoto S, et al. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin Pharmacol Ther 2000; 68: 541–55

    Article  PubMed  CAS  Google Scholar 

  31. McClain BC, Kain ZN. Procedural pain in neonates: the new millennium. Pediatrics 2005; 115: 1073–5

    Article  PubMed  Google Scholar 

  32. Simons SHP, Tibboel D. Pain perception development and maturation. Semin Fetal Neonat Med 2006; 11: 227–31

    Article  Google Scholar 

  33. Marsh DF, Hatch DJ, Fitzgerald M. Opioid systems and the newborn. Br J Anaesthesia 1997; 79: 787–95

    Article  CAS  Google Scholar 

  34. Talbot JN, Happe KH, Murrin CL. Mu opioid receptor coupling to Gi/o proteins increases during postnatal development in rat brain. J Pharmacol Exp Ther 2005; 314: 596–602

    Article  PubMed  CAS  Google Scholar 

  35. Bouwmeester NJ, Hop WC, van Dijk M, et al. Postoperative pain in the neonate: age-related differences in morphine requirements and metabolism. Intensive Care Med 2003 Nov; 29(11): 2009–15

    Article  PubMed  Google Scholar 

  36. Beinleich CJ, Rissinger CJ, Vitkauskis KJ, et al. Role of bradykinin in the antihypertrophic effects of enalapril in the newborn pig heart. Mol Cell Biochem 1996; 163–164: 77–83

    Article  Google Scholar 

  37. McCulloch H, Rupe WA. The tolerance of children for digitalis. S Med J 1922; 15: 381–5

    Article  Google Scholar 

  38. Mathes S, Greiner T, Messeloff C, et al. Comparison of the sensitivity of children and adults to digoxin. Fed Proc 1951; 10: 323

    Google Scholar 

  39. Kearin M, Kelly J, O’Malley K. Digoxin ‘receptors’ in neonates: an explanation of less sensitivity to digoxin than in adults. Clin Pharmacol Ther 1980; 28: 346–9

    Article  PubMed  CAS  Google Scholar 

  40. Kelliher G, Roberts J. Effect of age on the cardiotoxic action of digitalis. J Pharmacol Exp Ther 1976; 197: 10–8

    PubMed  CAS  Google Scholar 

  41. Haag HB, Corbell Jr RL. The effect of age of cats on susceptibility to digitalis. J Pharmacol Exp Ther 1940; 68: 45–9

    CAS  Google Scholar 

  42. Weinhous E, Kaplanski J, Warzawski D, et al. Cardiac toxicity of digoxin in newborn and adult rats. Pediatr Pharmacol 1980; 1: 97–103

    Google Scholar 

  43. Lucchesi PA, Sweadner KJ. Postnatal changes in NaK-ATPase isoform expression in rat cardiac ventricle: conservation of biphasic ouabain affinity. J Biol Chem 1991; 266: 9327–31

    PubMed  CAS  Google Scholar 

  44. Dubin A, Kikkert M, Mirmiran M, et al. Cisapride associated with QTc prolongation in very low birth weight preterm infants. Pediatrics 2001; 107: 1313–6

    Article  PubMed  CAS  Google Scholar 

  45. Djeddi D, Kongolo G, Lefaix C, et al. Léké effect of domperidone on QT interval in neonates. J Pediatr 2008; 153(5): 663–6

    Article  PubMed  CAS  Google Scholar 

  46. Ignjatovic V, Furmedge J, Newall F, et al. Age-related differences in heparin response. Thromb Res 2006; 118: 741–5

    Article  PubMed  CAS  Google Scholar 

  47. Andrew M, Paes B, Milner R, et al. Development of the coagulation system in the healthy premature infant. Blood 1988; 72: 1651

    PubMed  CAS  Google Scholar 

  48. Andrew M, Paes B, Milner R, et al. The development of the human coagulation system in the fullterm infant. Blood 1987; 70: 165

    PubMed  CAS  Google Scholar 

  49. Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant: clinical research update. Am J Pediatr Hematol Oncol 1990; 12: 95–104

    Article  PubMed  CAS  Google Scholar 

  50. Newall F, Ignjatovic V, Summerhayes R, et al. In vivo age dependency of unfractionated heparin in infants and children. Thromb Res 2009; 123(5): 710–4

    Article  PubMed  CAS  Google Scholar 

  51. Sayer AA, Cooper C, Barker DJ. Is lifespan determined in utero? [editorial]. Arch Dis Child Fetal Neonat Ed 1997; 77(3): F162–4

    Article  CAS  Google Scholar 

  52. Hoppe CC, Evans RG, Bertram JF, et al. Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1768–74

    Article  PubMed  CAS  Google Scholar 

  53. Nyirenda MJ, Lindsay RS, Kenyon CJ, et al. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 1998; 101: 2174–81

    Article  PubMed  CAS  Google Scholar 

  54. Kapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev 2008; 57: 586–95

    Article  PubMed  CAS  Google Scholar 

  55. Yeh TF, Lin YJ, Huang CC, et al. Early dexamethasone therapy in preterm infants: a follow-up study. Pediatrics 1998; 101: E7

    Article  PubMed  CAS  Google Scholar 

  56. Shinwell ES, Karplus M, Reich D, et al. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonat Ed 2000; 83: F177–81

    Article  CAS  Google Scholar 

  57. O’Shea TM, Kothadia JM, Klinepeter KL, et al. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: outcome of study participants at 1-year adjusted age. Pediatrics 1999; 104: 15–21

    Article  PubMed  Google Scholar 

  58. Whitaker-Azmitia PM. Role of serotonin and other neurotransmitter receptors in brain development: basis for developmental pharmacology. Pharmacol Rev 1991; 43(4): 553–61

    PubMed  CAS  Google Scholar 

  59. Vitiello B, Jensen P. Developmental perspectives in pediatric psychopharmacology. Psychopharmacol Bull 1995; 31: 75–81

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Mulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulla, H. Understanding Developmental Pharmacodynamics. Pediatr-Drugs 12, 223–233 (2010). https://doi.org/10.2165/11319220-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11319220-000000000-00000

Keywords

Navigation