Skip to main content
Log in

Pediatric Palliative Care

Use of Opioids for the Management of Pain

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Pediatric palliative care (PPC) is provided to children experiencing life-limiting diseases (LLD) or life-threatening diseases (LTD). Sixty to 90% of children with LLD/LTD undergoing PPC receive opioids at the end of life. Analgesia is often insufficient. Reasons include a lack of knowledge concerning opioid prescribing and adjustment of opioid dose to changing requirements. The choice of first-line opioid is based on scientific evidence, pain pathophysiology, and available administration modes. Doses are calculated on a bodyweight basis up to a maximum absolute starting dose.

Morphine remains the gold standard starting opioid in PPC. Long-term opioid choice and dose administration is determined by the pathology, analgesic effectiveness, and adverse effect profile. Slow-release oral morphine remains the dominant formulation for long-term use in PPC with hydromorphone slow-release preparations being the first rotation opioid when morphine shows severe adverse effects. The recently introduced fentanyl transdermal therapeutic system with a drug-release rate of 12.5μg/hour matches the lower dose requirements of pediatric cancer pain control. Its use may be associated with less constipation compared with morphine use. Though oral transmucosal fentanyl citrate has reduced bioavailability (25%), it inherits potential for breakthrough pain management. However, the gold standard breakthrough opioid remains immediate-release morphine. Buprenorphine is of special clinical interest as a result of its different administration routes, long duration of action, and metabolism largely independent of renal function. Antihyperalgesic effects, induced through antagonism at the κ-receptor, may contribute to its effectiveness in neuropathic pain. Methadone also has a long elimination half-life (19 [SD 14] hours) and NMDA receptor activity although dose administration is complicated by highly variable morphine equianalgesic equivalence (1:2.5–20). Opioid rotation to methadone requires special protocols that take this into account. Strategies to minimize adverse effects of long-term opioid treatment include dose reduction, symptomatic therapy, opioid rotation, and administration route change. Patient- or nurse-controlled analgesia devices are useful when pain is rapidly changing, or in terminal care where analgesic requirements may escalate. In this article, we present detailed pediatric pharmacokinetic and pharmacodynamic data for opioids, their indications and contraindications, as well as dose-administration regimens that include practical strategies for opioid switching and dose reduction. Additionally, we discuss the problem of hyperalgesia and the use of adjuvant drugs to support opioid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV
Fig. 2
Fig. 3
Table V
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldman A. Symptoms and suffering at the end of life in children with cancer: correspondence. N Engl J Med 2000; 342: 1997–9

    Article  Google Scholar 

  2. Wolfe J, Grier HE, Klar N, et al. Symptoms and suffering at the end of life in children with cancer. N Engl J Med 2000; 342: 326–33

    Article  PubMed  CAS  Google Scholar 

  3. Drake R, Frost J, Collins JJ. The symptoms of dying children. J Pain Symptom Manage 2003; 26(1): 594–603

    Article  PubMed  Google Scholar 

  4. WHO. Cancer pain relief and palliative care in children. Geneva: World Health Organization, 1998

  5. Craig F, Abu-Saad Huijer H, Benini F, et al. IMPaCCT: standards for paediatric palliative care in Europe. Eur J Pall Care 2007; 14(3): 109–14

    Google Scholar 

  6. A guide to the development of children’s palliative care services: update of the report by The Association for Children with Life-threatening or Terminal Conditions and their Families and The Royal College of Paediatrics and Child Health. London: ACT and RCPCH, 2003

  7. A palliative care needs assessment for children. Dublin: Stationery Office, 2005

  8. Zernikow B, Dietz B. Schmerzerkennung, -messung und -therapie bei Kindern mit kognitiver und körperlicher Behinderung. Neuropädiatrie in Klinik und Praxis 2003; 2: 12–7

    Google Scholar 

  9. Lenton S, Stallard P, Lewis M, et al. Prevalence and morbidity associated with non-malignant, life-threatening conditions in childhood. Child Care Health Dev 2001; 27(389): 389–98

    Article  PubMed  CAS  Google Scholar 

  10. Sirkiä K, Saarinen UM, Ahlgren B, et al. Terminal care of the child with cancer at home. Acta Paediatr 1997; 86: 1125–30

    Article  PubMed  Google Scholar 

  11. Sirkia K, Hovi L, Pouttu J, et al. Pain medication during terminal care of children with cancer. J Pain Symptom Manage 1998; 15: 220–6

    Article  PubMed  CAS  Google Scholar 

  12. Hunt A. Pain: assessment. In: Goldman A, Hain R, Liben S, editors. Oxford textbook of palliative care for children. Oxford: Oxford University Press, 2006: 281–303

    Google Scholar 

  13. Hicks CL, von Baeyer CL, Spafford PA, et al. The faces pain scale: revised. Toward a common metric in pediatric pain measurement. Pain 2001; 93:173–83

    Article  PubMed  CAS  Google Scholar 

  14. Zernikow B, Schiessl C, Wamsler C, et al. Praktische Schmerztherapie in der pädiatrischen Onkologie. Schmerz 2006; 20: 24–39

    Article  PubMed  CAS  Google Scholar 

  15. Zernikow B, Smale H, Michel E, et al. Paediatric cancer pain management using the WHO analgesic ladder: results of a prospective analysis from 2265 treatment days during a quality improvement study. Eur J Pain 2006; 10: 587–95

    Article  PubMed  Google Scholar 

  16. Tsao JCI, Zeltzer LK. Complementary and alternative medicine approaches for pediatric pain: a review of the state-of-the-science. eCAM 2005; 2(2): 149–59

    PubMed  Google Scholar 

  17. Kuttner L. Pain: an integrative approach. In: Goldman A, Hain R, Liben S, editors. Oxford textbook of palliative care in children. Oxford: Oxford University Press, 2006

    Google Scholar 

  18. Cepeda MS, Carr DB, Lau J, et al. Music for pain relief. Cochrane Database Syst Rev 2006; 19: CD004843

    Google Scholar 

  19. Twycross R, Wilcock A, Charlesworth S, editors. Palliative care formulary. 2nd ed. Oxford: Radcliffe Medical Press, 2002

    Google Scholar 

  20. Berde CB, Sethna NF. Analgesics for the treatment of pain in children. N Engl J Med 2002; 347: 1094–103

    Article  PubMed  CAS  Google Scholar 

  21. Allington N, Vivegnis D, Gerard P. Cyclic administration of pamidronate to treat osteoporosis in children with cerebral palsy or a neuromuscular disorder: a clinical study. Acta Orthop 2005; 71: 91–7

    Google Scholar 

  22. Stichtenoth DO, Frölich J. The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs 2003; 63(1): 33–45

    Article  PubMed  CAS  Google Scholar 

  23. McNicol E, Strassels SA, Goudas L, et al. NSAIDS or paracetamol, alone or combined with opioids, for cancer pain. Cochrane Database Syst Rev 2005; 25(1):CD005180

    Google Scholar 

  24. Garrido MJ, Habre W, Rombout F, et al. Population pharmacokinetic/pharmacodynamic modelling of the analgesic effects of tramadol in pediatrics. Pharm Res 2006; 23: 2014–23

    Article  PubMed  CAS  Google Scholar 

  25. Tobias JD. Tramadol for postoperative analgesia in adolescents following orthopedic surgery in a third world country. Am J Pain 1996; 6: 51–3

    Google Scholar 

  26. Griessinger N, Rösch W, Schott G, et al. Tramadol-Infusion zur Schmerztherapie nach großen Blaseneingriffen auf Kinderstationen. Der Urologe 1997; 36: 552–6

    Article  PubMed  CAS  Google Scholar 

  27. Schäffer J, Piepenbrock S, Kretz FJ, et al. Nalbuphin und Tramadol zur postoperativen Schmerzbekämpfung bei Kindern. Der Anaesthesist 1986; 35:408–13

    PubMed  Google Scholar 

  28. Schäffer J, Hagemann H, Holzapfel S, et al. Untersuchung zur postoperativen Schmerztherapie bei Kleinkindern mit Tramadol. Fortschritte Anästh Notfall-Intensivmed 1989; 3: 42–5

    Google Scholar 

  29. Erhan E, Inal MT, Aydinok Y, et al. Tramadol infusion for the pain management in sickle cell disease: a case report. Paediatr Anaesth 2007; 17: 84–6

    Article  PubMed  Google Scholar 

  30. Brown SC, Stinson J. Treatment of pediatric chronic pain with tramadol hydrochloride: siblings with Ehlers-Danlos syndrome–hypermobility type. Pain Res Manag 2004; 9: 209–11

    PubMed  Google Scholar 

  31. Staritz M. Pharmacology of the sphincter of Oddi. Endoscopy 1988; 20Suppl. 1: 171–4

    Article  PubMed  Google Scholar 

  32. Waldvogel HH. Analgetika Antinozizeptiva, Adjuvanzien: Handbuch für die Schmerzpraxis. Berlin: Springer Verlag, 1996

    Book  Google Scholar 

  33. Stamer U, Stüber F. Pharmakogenetik und pädiatrische Schmerztherapie. Kinder Jugendmed 2004; 4: 161–7

    Google Scholar 

  34. Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60(6): 636–44

    Article  PubMed  CAS  Google Scholar 

  35. Allgaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth 2005; 95: 231–9

    Article  Google Scholar 

  36. Payne KA, Roelofse JA, Shipton EA. Pharmacokinetics of oral tramadol drops for postoperative pain relief in children aged 4 to 7 years: a pilot study. Anesth Prog 2002; 49: 109–12

    PubMed  CAS  Google Scholar 

  37. Murthy B, Pandy KS, Booker PD, et al. Pharmacokinetics of tramadol in children after i.v. or caudal epidural administration. Br J Anaesth 2000; 84: 346–9

    Article  PubMed  CAS  Google Scholar 

  38. Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth 2002; 12: 205–19

    Article  PubMed  Google Scholar 

  39. Williams DG, Hatch DJ, Howard RF. Codeine phosphate in paediatric medicine. Br J Anaesth 2001; 86: 413–21

    Article  PubMed  CAS  Google Scholar 

  40. Brousseau DC, McCarver DG, Drendel AL, et al. The effect of CYP2D6 polymorphisms on the response to pain treatment for pediatric sickle cell pain crisis. J Pediatr 2007; 150: 623–6

    Article  PubMed  CAS  Google Scholar 

  41. Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51: 289–95

    Article  PubMed  CAS  Google Scholar 

  42. Band CJ, Band PR, Deschamps M. Human pharmacokinetic study of immediate-release (codeine phosphate) and sustained-release (codeine Contin) codeine. J Clin Pharmacol 1994; 34(14): 938–43

    PubMed  CAS  Google Scholar 

  43. Quiding H, Olsson GL, Boreus LO, et al. Infants and young children metabolise codeine to morphine: a study after single and repeated rectal administration. Br J Clin Pharmacol 1992; 33: 45–9

    Article  PubMed  CAS  Google Scholar 

  44. Kamei J. Role of opioidergic and serotonergic mechanisms in cough and antitussives. Pulm Pharmacol 1996; 102(9): 349–59

    Article  Google Scholar 

  45. Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48(6): 686–93

    Article  PubMed  CAS  Google Scholar 

  46. Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33

    Article  PubMed  CAS  Google Scholar 

  47. Mikus G, Trausch B, Rodewald C, et al. Effect of codeine on gastrointestinal motility in relation to CYP2D6 phenotype. Clin Pharmacol Ther 1997; 61: 459–66

    Article  PubMed  CAS  Google Scholar 

  48. Zernikow B, Schiessl C, Wamsler C, et al. Opioidtherapie chronischer Schmerzen bei Kindern: Fallbesprechungen. Der Schmerz 2005; 19: 418–25

    Article  PubMed  CAS  Google Scholar 

  49. Siden H, Nalewajek V. High dose opioids in pediatric palliative care. J Pain Symptom Manage 2003; 25: 397–9

    Article  PubMed  Google Scholar 

  50. Goldman A. The role of oral controlled-release morphine for pain relief in children with cancer. Palliat Med 1990; 4: 279–85

    Article  Google Scholar 

  51. Hunt A, Joel S, Dick G, et al. Population pharmacokinetics of oral morphine and its glucuronides in children receiving morphine as immediate-release liquid or sustained-release tablets for cancer pain. J Pediatr 1999; 135: 47–55

    Article  PubMed  CAS  Google Scholar 

  52. Jacobson SJ, Kopecky EA, Joshi P, et al. Randomised trial of oral morphine for painful episodes of sickle-cell disease in children. Lancet 1997; 350: 1358–61

    Article  PubMed  CAS  Google Scholar 

  53. Nahata MC. Plasma concentrations of morphine in children with chronic pain: comparison of controlled release and regular morphine sulphate tablets. J Clin Pharm Ther 1991; 16: 193–5

    Article  PubMed  CAS  Google Scholar 

  54. Zernikow B, Lindena G. Long acting morphine for pain control in paediatric oncology. Med Pediatr Oncol 2001; 36(4): 451–8

    Article  PubMed  CAS  Google Scholar 

  55. Sittl R, Richter R. Tumorschmerztherapie bei Kindern und Jugendlichen mit Morphin. Der Anaesthesist 1991; 40: 96–9

    PubMed  CAS  Google Scholar 

  56. Hunseler C, Roth B, Pothmann R, et al. Intramuscular injections in children. Schmerz 2005; 19(2): 140–3

    Article  PubMed  CAS  Google Scholar 

  57. Coffman BL, Rios GR, King CC, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997; 25: 1–4

    PubMed  CAS  Google Scholar 

  58. Faura CC, Collins SL, Moore RA, et al. Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain 1998; 74: 43–53

    Article  PubMed  CAS  Google Scholar 

  59. Koren G, Maurice L. Pediatric uses of opioids. Pediatr Clin North Am 1989; 36: 1141–56

    PubMed  CAS  Google Scholar 

  60. Pacifici GM, Sawe J, Kager L, et al. Morphine glucuronidation in human fetal and adult liver. Eur J Clin Pharmacol 1982; 22: 553–8

    Article  PubMed  CAS  Google Scholar 

  61. Pacifici GM, Franchi M, Giuliani L, et al. Development of the glucuronyltransferase and sulphotransferase towards 2-naphthol in human fetus. Dev Pharmacol Ther 1989; 14: 108–14

    PubMed  CAS  Google Scholar 

  62. Kart T, Chirstrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review. Part 1: pharmacokinetics. Paediatr Anaesth 1997; 7(1): 5–11

    Article  PubMed  CAS  Google Scholar 

  63. Lynn A, Nespeca MK, Bratton SL, et al. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg 1998; 86: 958–63

    PubMed  CAS  Google Scholar 

  64. Van Lingen RA, Anderson BJ, Tibboel D. The effects of analgesia in the vulnerable infant during the perinatal period. Clin Perinatol 2002; 29: 511–34

    Article  PubMed  Google Scholar 

  65. Bouwmeester NJ, Anderson BJ, Tibboel D, et al. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 2004; 92: 208–17

    Article  PubMed  CAS  Google Scholar 

  66. Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol 1989; 28: 599–604

    Article  PubMed  CAS  Google Scholar 

  67. Sjogren P, Dragstedt L, Christensen CB. Myoclonic spasms during treatment with high doses of intravenous morphine in renal failure. Acta Anaesthesiol Scand 1993; 37(8): 780–2

    Article  PubMed  CAS  Google Scholar 

  68. Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role of morphine-6-glucuronide. BMJ 1986; 232: 1548–9

    Article  Google Scholar 

  69. Dagan O, Klein J, Bohn D, et al. Morphine pharmacokinetics in children following cardiac surgery: effects of disease and inotropic support. J Cardiothorac Vasc Anaesth 1993; 7: 396–8

    Article  CAS  Google Scholar 

  70. McRorie TI, Lynn AM, Nespeca MK, et al. The maturation of morphine clearance and metabolism. Am J Dis Child 1992; 146: 972–6

    PubMed  CAS  Google Scholar 

  71. Pokela ML, Olkkola KT, Seppäla T, et al. Age-related morphine kinetics in infants. Dev Pharmacol Ther 1993; 20: 26–34

    PubMed  CAS  Google Scholar 

  72. Bhat R, Abu-Harb M, Chari G, et al. Morphine metabolism in acutely ill preterm newborn infants. J Pediatr 1992; 120: 795–9

    Article  PubMed  CAS  Google Scholar 

  73. Olsen GD. Morphine binding to human plasma proteins. Clin Pharmacol Ther 1975; 17: 31–5

    PubMed  CAS  Google Scholar 

  74. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71:115–21

    Article  PubMed  CAS  Google Scholar 

  75. Osborne PB, Chieng B, Christie MJ. Morphine-6 beta-glucuronide has a higher efficacy than morphine as a mu-opioid receptor agonist in the rat locus coeruleus. Br J Pharmacol 2000; 131(7): 1422–8

    Article  PubMed  CAS  Google Scholar 

  76. Murthy BR, Pollack GM, Brouwer KL. Contribution of morphine-6-glu-curonide to antinociception following intravenous administration of morphine to healthy volunteers. J Clin Pharmacol 2002; 42(5): 569–76

    Article  PubMed  CAS  Google Scholar 

  77. Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol 1995; 40: 145–52

    PubMed  CAS  Google Scholar 

  78. Gong QL, Hedner T, Bjorkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain 1992; 48: 249–55

    Article  PubMed  CAS  Google Scholar 

  79. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a potent antagonist of morphine analgesia. Life Sci 1990; 47: 579–85

    Article  PubMed  CAS  Google Scholar 

  80. Barrett DA, Barker DP, Rutter N, et al. Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions. Br J Clin Pharmacol 1996; 41: 531–7

    Article  PubMed  CAS  Google Scholar 

  81. Collins JJ, Geake J, Grier HE, et al. Patient-controlled analgesia for mucositis pain in children: a three-period crossover study comparing morphine and hydromorphone. J Pediatr 1996; 129(5): 722–8

    Article  PubMed  CAS  Google Scholar 

  82. Murray A, Hagen NA. Hydromorphone. J Pain Symptom Manage 2005; 29: 57–66

    Article  CAS  Google Scholar 

  83. Babul N, Darke AC, Hain R. Hydromorphone and metabolite pharmacokinetics in children. J Pain Symptom Manage 1995; 10: 335–7

    Article  PubMed  CAS  Google Scholar 

  84. Drake R, Longworth J, Collins JJ. Opioid rotation in children with cancer. J Pall Med 2004; 7: 419–22

    Article  Google Scholar 

  85. Cone EJ, Phelps BA, Gorodetzky CW. Urinary excretion of hydromorphone and metabolites in humans, rats, dogs, guinea pigs, and rabbits. J Pharm Sci 1977; 66: 1709–13

    Article  PubMed  CAS  Google Scholar 

  86. Babul N. Putative role of hydromorphone metabolites in myoclonus [published erratum appears in Pain 1993; 52: 123]. Pain 1992; 51: 260–1

    Article  PubMed  CAS  Google Scholar 

  87. Hagen N, Thirlwell MP, Dhaliwal HS, et al. Steady-state pharmacokinetics of hydromorphone and hydromorphone-3-glucuronide in cancer patients after immediate and controlled-release hydromorphone. J Clin Pharmacol 1995; 35: 37–44

    PubMed  CAS  Google Scholar 

  88. Lindena G, Arnau H, Liefhold J. Hydromorphon: pharmakologische Eigenschaften und therapeutische Wirksamkeit. Schmerz 1998; 12: 195–204

    Article  PubMed  CAS  Google Scholar 

  89. Boulton DW, Arnaud P, DeVane CL. Phamacokinetics and pharmacodynamics of methadone enantiomers after a single dose of racemate. Clin Pharmacol Ther 2001; 70: 48–57

    Article  PubMed  CAS  Google Scholar 

  90. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology 1982; 57: 458–67

    Article  PubMed  CAS  Google Scholar 

  91. Sabatowski R, Kasper SM, Radbruch L. Patient-controlled analgesia with intravenous L-methadone in a child with cancer pain refractory to high-dose morphine. J Pain Symptom Manage 2002; 23: 3–5

    Article  PubMed  Google Scholar 

  92. Berde CB, Holzman RS, Sethna NF. A comparison of methadone and morphine for postoperative analgesia in children and adolescents [abstract]. Anesthesiology 1988; 69Suppl. 3A: A768

    Article  Google Scholar 

  93. Berde CB, Beyer JE, Boumaki MC, et al. Comparison of morphine and methadone for prevention of postoperative pain in 3- to 7-year-old children. J Pediatr 1991; 119(1): 136–41

    Article  PubMed  CAS  Google Scholar 

  94. Yang F, Tong X, McCarver DG, et al. Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn 2006; 33(4): 485–518

    Article  PubMed  CAS  Google Scholar 

  95. Chana SK, Anand KJ. Can we use methadone for analgesia in neonates? Arch Dis Child Fetal Neonatal Ed 2001; 85(2): F79–81

    Article  PubMed  CAS  Google Scholar 

  96. Martinson IM, Nixon S, YaDeau R, et al. Nursing care in childhood cancer: methadone. Am J Nurs 1982; 82: 432–5

    PubMed  CAS  Google Scholar 

  97. Miser AW, Miser JS. The use of oral methadone to control moderate and severe pain in children and young adults with malignancy. Clin J Pain 1986; 1: 243–8

    Article  Google Scholar 

  98. Bruera E, Palmer JL, Rico MA, et al. Methadone versus morphine as a first-line strong opioid for cancer pain: a randomized, double-blind study. J Clin Oncol 2004; 22(1): 185–92

    Article  PubMed  CAS  Google Scholar 

  99. Borland M, Jacobs I, King B, et al. A randomized controlled trial comparing intranasal fentanyl to intravenous morphine for managing acute pain in children in the emergency department. Ann Emerg Med 2007; 49: 335–40

    Article  PubMed  Google Scholar 

  100. Mayes S, Ferrone M. Fentanyl HCI patient-controlled iontophoretic transdermal system for the management of acute postoperative pain. Ann Pharmacother 2006; 40(12): 2178–86

    Article  PubMed  CAS  Google Scholar 

  101. Zernikow B, Michel E, Anderson BJ. Transdermal fentanyl in childhood and adolescence: a comprehensive literature review. J Pain 2007; 8: 187–207

    Article  PubMed  CAS  Google Scholar 

  102. Christensen ML, Wang WC, Harris S, et al. Transdermal fentanyl administration in children and adolescents with sickle cell pain crisis. Hematol Oncol 1996; 18: 372–6

    Article  CAS  Google Scholar 

  103. Paut O, Camboulives J, Viard L, et al. Pharmacokinetics of transdermal fentanyl in the peri-operative period in young children. Anaesthesia 2000; 5: 1202–7

    Article  Google Scholar 

  104. Levron JC. Pharmacokinetic: de la Recherche a la Clinique. In: Bres J, Panis G, editors. A special issue of the intern. In J Clin Pharm 1992; 199–203

    Google Scholar 

  105. Collins JJ, Dunkel IJ, Gupta SK, et al. Transdermal fentanyl in children with cancer pain: feasibility, tolerability and pharmacokinetic correlates. J Pediatr 1999; 134: 319–23

    Article  PubMed  CAS  Google Scholar 

  106. Finkel JC, Finley A, Greco C, et al. Transdermal fentanyl in the management of children with chronic severe pain: results from an international study. Cancer 2005; 104(12): 2847–57

    Article  PubMed  CAS  Google Scholar 

  107. Hunt A, Goldman A, Devine T, et al. Transdermal fentanyl for pain relief in a paediatric palliative care population. Palliat Med 2001; 15: 405–12

    Article  PubMed  CAS  Google Scholar 

  108. Irving H, Myles J, Thompson A, et al. The use of transdermal fentanyl in adolescent palliative patients: a single-centre experience [abstract]. 4th Congress of the European Association of Palliative Care; 1995 Dec 6–9; Barcelona

  109. Noyes M, Irvin H. The use of transdermal fentanyl in pediatric oncology palliative care. Am J Hosp Palliat Care 2001; 18: 411–6

    Article  PubMed  CAS  Google Scholar 

  110. Tobias JD. Transdermal fentanyl: applications and indications in the pediatric patient. Am J Pain Manag 1992; 2: 30–3

    Google Scholar 

  111. Mannerkoski MK, Heiskala HJ, Santavauori PR, et al. Transdermal fentanyl therapy for pains in children with infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol 2001; 5Suppl. A: 175–7

    Article  PubMed  Google Scholar 

  112. Patt RB, Lustik S, Litman RS. The use of transdermal fentanyl in a six-year-old patient with neuroblastoma and diffuse abdominal pain. J Pain Symptom Manage 1993; 8: 317–9

    Article  PubMed  CAS  Google Scholar 

  113. Labroo RB, Paine MF, Thummel KE, et al. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 1997; 25: 1072–80

    PubMed  CAS  Google Scholar 

  114. Sasson M, Shvartzman P. Fentanyl patch sufficient analgesia for only one day. J Pain Symptom Manage 2006; 31: 389–90

    Article  PubMed  Google Scholar 

  115. Marier JF, Lor M, Potvin D, et al. Pharmacokinetics, tolerability and performance of a novel matrix transdermal delivery system of fentanyl relative to the commercially available reservoir formulation in healthy subjects. J Clin Pharmacol 2006; 46: 642–53

    Article  PubMed  CAS  Google Scholar 

  116. Sathyan G, Guo C, Sivakumar K, et al. Evaluation of the bioequivalence of two transdermal fentanyl systems following single and repeat applications. Curr Med Res Opin 2005; 21: 1961–8

    Article  PubMed  CAS  Google Scholar 

  117. Johnson KL, Erickson JP, Holley FO. Fentanyl pharmacokinetics in the paediatric population [abstract]. Anesthesiology 1984; 61(3 Suppl. A): A441

    Article  Google Scholar 

  118. Robert R, Brack A, Blakeney P, et al. A double-blind study of the analgesic efficacy of oral transmucosal fentanyl citrate and oral morphine in pediatric patients undergoing burn dressing change and tubbing. J Burn Care Rehabil 2003; 24(6): 351–5

    Article  PubMed  Google Scholar 

  119. Portenoy RK, Payne R, Coluzzi P, et al. Oral transmucosal fentanyl citrate (OTFC) for the treatment of breakthrough pain in cancer patients: a controlled dose titration study. Pain 1999; 79: 303–12

    Article  PubMed  CAS  Google Scholar 

  120. Streisand JB, Busch MA, Egan TD, et al. Dose proportionality and pharmacokinetics of oral transmucosal fentanyl citrate. Anaesthesia 1998; 88(2): 305–9

    Article  CAS  Google Scholar 

  121. Dsida RM, Wheeler M, Birmingham PK, et al. Premedication of pediatric tonsillectomy patients with oral transmucosal fentanyl citrate. Anesth Analg 1998; 86(1): 66–70

    PubMed  CAS  Google Scholar 

  122. Wheeler M, Birmingham PK, Dsida RM, et al. Uptake pharmacokinetics of the Fentanyl Oralet® in children scheduled for central venous access removal: implications for the timing of initiating painful procedures. Paediatr Anaesth 2002; 12: 594–9

    Article  PubMed  Google Scholar 

  123. Inturrisi CE, Colburn WA. Application of pharmacokinetic-pharmacody-namic modeling to analgesia. In: Foley KM, Inturrisi CE, editors. Advances in pain research and therapy: opioid analgesics in the management of clinical pain. New York: Raven Press, 1986: 441–52

    Google Scholar 

  124. Lichtor JL, Sevarino FB, Joshi GP, et al. The relative potency of oral transmucosal fentanyl citrate compared with intravenous morphine in the treatment of moderate to severe postoperative pain. Anesth Analg 1999; 89(3): 732–8

    PubMed  CAS  Google Scholar 

  125. Lee M, Kern SE, Kisicki JC, et al. A pharmacokinetic study to compare two simultaneous 400 μg doses with a single 800 μg dose of oral transmucosal fentanyl citrate. J Pain Symptom Manage 2003; 26(2): 743–7

    Article  PubMed  CAS  Google Scholar 

  126. Johnson RE, Fudala PJ, Payne R. Buprenorphine: considerations for pain management. J Pain Symptom Manage 2005; 29: 297–326

    Article  PubMed  CAS  Google Scholar 

  127. Boas RA, Villiger JW. Clinical actions of fentanyl and buprenorphine: the significance of receptor binding. Br J Anaesth 1985; 57: 192–6

    Article  PubMed  CAS  Google Scholar 

  128. Olkkola KT, Manuksela EL, Korpela R. Pharmacokinetics of intravenous buprenorphine in children. Br J Clin Pharmacol 1989; 28: 202–4

    Article  PubMed  CAS  Google Scholar 

  129. Kamal RS, Khan M. Caudal analgesia with buprenorphine for postoperative pain relief in children. Paediatr Anaesth 1995; 5: 101–6

    Article  PubMed  CAS  Google Scholar 

  130. Manuksela EL, Korpela R, Olkkola KT. Comparison of buprenorphine with morphine in the treatment of postoperative pain in children. Anesth Analg 1988; 67: 233–9

    Article  Google Scholar 

  131. Gangopadhyay AN, Bhattacharya P, Sinha A. Caudal epidural buprenorphine for postoperative pain relief in children. Pediatr Surg Int 1992; 7:124–5

    Article  Google Scholar 

  132. Lone AQ, Naquash I, Qazi S. Role of buprenorphine hydrochloride in attenuating the haemodyanamic, hormonal and metabolic responses to surgery in children. JK-Practitioner 1998; 5: 300–2

    Google Scholar 

  133. Massimo L. Control of pain with sublingual buprenorphine in children with cancer [abstract]. J Pediatr Hematol Oncol 1985; 3: 224

    Google Scholar 

  134. Girotra S, Kumar S, Rajendran KM. Comparison of caudal morphine and buprenorphine for post-operative analgesia in children. Eur J Anaesthesiol 1993; 10: 309–12

    PubMed  CAS  Google Scholar 

  135. Girotra S, Kumar S, Rajendran KM. Postoperative analgesia in children who have genito-urinary surgery: a comparison between caudal buprenorphine and bupivacaine. Anaesthesia 1990; 45: 406–8

    Article  PubMed  CAS  Google Scholar 

  136. Geib AJ, Babu K, Ewald MB. Adverse effects in children after unintentional buprenorphine exposure. Pediatrics 2006; 118: 1746–51

    Article  PubMed  Google Scholar 

  137. Gaulier JM, Charvier F, Monceaux F, et al. Ingestion of high-dose buprenorphine by a 4 year-old child. J Clin Toxicol 2004; 42: 993–5

    Article  Google Scholar 

  138. Budd K. Buprenorphine and the transdermal system: the ideal match in pain management. Int J Clin Pract Suppl 2003; 133: 9–14

    PubMed  CAS  Google Scholar 

  139. Sittl R, Griessinger N, Likar R. Analgesic efficacy and tolerability of transdermal buprenorphine in patients with inadequately controlled chronic pain related to cancer and other disorders: a multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther 2003; 25: 150–68

    Article  PubMed  CAS  Google Scholar 

  140. Likar R, Kayser H, Sittl R. Long-term management of chronic pain with transdermal buprenorphine: a multicenter, open-label, follow-up study in patients from three short-term clinical trials. Clin Ther 2006; 28(6): 943–52

    Article  PubMed  CAS  Google Scholar 

  141. Griessinger N, Sittl R, Likar R. Transdermal buprenorphine in clinical practice: a post-marketing surveillance study in 13179 patients. Curr Med Res Opin 2005; 21: 1147–56

    Article  PubMed  CAS  Google Scholar 

  142. Evans HC, Easthope SE. Transdermal buprenorphine. Drugs 2003; 63(19): 1999–2010

    Article  PubMed  CAS  Google Scholar 

  143. Cuer JC, Dapoigny M, Larpent JL, et al. Effects of buprenorphine on motor activity of the sphincter of Oddi in man. Eur J Clin Pharmacol 1989; 36: 203–4

    Article  PubMed  CAS  Google Scholar 

  144. Michel E, Zernikow B. Buprenorphineinsatz bei Kindern. Eine klinischpharmakologische Übersicht. Monatsschr Kinderheilkd 2006; 154: 799–807

    Article  Google Scholar 

  145. Picard N, Cresteil T, Djebli N. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos 2005; 33: 689–95

    Article  PubMed  CAS  Google Scholar 

  146. Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet 1999; 37: 17–40

    Article  PubMed  CAS  Google Scholar 

  147. Boger RH. Renal impairment: a challenge for opioid treatment? The role of buprenorphine. J Pall Med 2006; 20(1): 17–23

    Article  Google Scholar 

  148. Olkkola KT, Hamunen K, Manuksela EL. Clinical pharmacokinetics and pharmacodynamics of opioid analgesics in infants and children. Clin Pharmacokinet 1995; 28: 385–404

    Article  PubMed  CAS  Google Scholar 

  149. Barrett DA, Simpson J, Rutter N, et al. The pharmacokinetics and physiological effects of buprenorphine infusion in premature neonates. Br J Clin Pharmacol 1993; 36(3): 215–9

    Article  PubMed  CAS  Google Scholar 

  150. Koppert W, Ihmsen H, Kordy H. Different profiles of buprenorphine-induced analgesia and antihyperalgesia in a human pain model. Pain 2005; 118:15–22

    Article  PubMed  CAS  Google Scholar 

  151. Likar R, Sittl R. Transdermal buprenorphine for treating nociceptive and neuropathic pain: four case studies. Anesth Analg 2005; 100: 781–5

    Article  PubMed  Google Scholar 

  152. Staats PS, Johnson RE. New perspectives on the pharmacology of opioids and their use in chronic pain. Progr Anesthesiol 2002; 16: 235–49

    Google Scholar 

  153. Lufty K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol 2004; 2: 395–402

    Article  Google Scholar 

  154. Dahan A. Opioid-induced respiratory effects: new data on buprenorphine. Palliat Med 2006; 20Suppl. 1: 3–8

    Google Scholar 

  155. Cowan A. Buprenorphine: new pharmacological aspects. Int J Clin Pract Suppl 2003; 133: 3–8

    PubMed  CAS  Google Scholar 

  156. Ohtani M, Kotaki H, Nishitateno K. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. J Pharmacol Exp Ther 1997; 281(1): 428–33

    PubMed  CAS  Google Scholar 

  157. Ohtani M, Kotaki H, Sawada Y. Comparative analysis of buprenorphineand norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther 1995; 272: 505–10

    PubMed  CAS  Google Scholar 

  158. Kokki H, Rasanen I, Lasalmi M, et al. Comparison of oxycodone pharmacokinetics after buccal and sublingual administration in children. Clin Pharmacokinet 2006; 45(7): 745–54

    Article  PubMed  CAS  Google Scholar 

  159. Poyhiä R, Seppäla T, Olkkola KT, et al. The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol 1992; 33: 617–21

    Article  PubMed  Google Scholar 

  160. Leow KP, Cramond T, Smith MT. Pharmacokinetics and pharmacodynamics of oxycodone when given intravenously and rectally to adult patients with cancer pain. Anesth Analg 1995; 80: 296–302

    PubMed  CAS  Google Scholar 

  161. Takala A, Kaasalainen V, Seppala T, et al. Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand 1997; 41: 309–12

    Article  PubMed  CAS  Google Scholar 

  162. Olkkola KT, Hamunen K, Seppäla T, et al. Pharmacokinetics and ventilatory effects of intravenous oxycodone in postoperative children. Br J Clin Pharmacol 1994; 38: 71–6

    Article  PubMed  CAS  Google Scholar 

  163. Pokela ML, Anttilla E, Seppäla T, et al. Marked variation in oxycodone pharmacokinetics in infants. Paediatr Anaesth 2005; 15: 560–5

    Article  PubMed  Google Scholar 

  164. Sharar SR, Garrougher MN, Selzer K, et al. A comparison of oral transmucosal fentanyl citrate and oral oxycodone for pediatric outpatient wound care. J Burn Care Rehabil 2000; 23: 27–31

    Article  Google Scholar 

  165. Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 2005; 95(4): 434–41

    Article  PubMed  CAS  Google Scholar 

  166. Drake R, Hain R. Pain: pharmacological management. In: Goldman A, Hain R, Liben S, editors. Oxford textbook of palliative care for children. New York: Oxford Universitiy Press, 2006: 304–31

    Google Scholar 

  167. Friedrichsdorf SJ, Finney D, Bergin M, et al. Breakthrough pain in children with cancer. J Pain Symptom Manage 2007; 32(2): 209–16

    Article  Google Scholar 

  168. Flogegard H, Ljungman G. Characteristics and adequacy of intravenous morphine infusions in children in a paediatric oncology setting. Med Pediatr Oncol 2003; 40: 233–8

    Article  PubMed  Google Scholar 

  169. Tazeroualti N, De Groote F, De Hert S, et al. Oral clonidine vs midazolam in the prevention of sevoflurane-induced agitation in children: a prospective, randomized, controlled trial. Br J Anaesth 2007; 98: 667–71

    Article  PubMed  CAS  Google Scholar 

  170. Morley JS, Watt JW, Wells JC, et al. Methadone in pain uncontrolled by morphine [abstract]. Lancet 1993; 342(8881): 1243

    Article  PubMed  CAS  Google Scholar 

  171. Morley JS, Makin MK. Comments on Ripamonti, et al. Pain 1997; 70(1997): 109–15

    Google Scholar 

  172. Tobias JD. Pain management for the critically ill child in the pediatric intense care unit. In: Schlechter NL, Berde CB, Yaster M, editors. Pain in infants, children, and adolescents. Philadelphia (PA): Lippincott Williams & Wilkins, 2003: 807–40

    Google Scholar 

  173. Nauck F, Ostgathe C, Dickerson ED. A German model for methadone conversion. Am J Hosp Palliat Care 2001; 18: 200–2

    Article  PubMed  CAS  Google Scholar 

  174. Ripamonti C, Groff L, Brunelli C, et al. Switching from morphine to oral methadone in treating cancer pain: what is the equianalgesic dose ratio? J Clin Oncol 1998; 16: 3216–21

    PubMed  CAS  Google Scholar 

  175. Mercadante S, Ferrera P, Villari P, et al. Rapid switching between transdermal fentanyl and methadone in cancer patients. J Clin Oncol 2005; 23(22): 5229–34

    Article  PubMed  Google Scholar 

  176. Collins JJ, Grier HE, Kinney HC, et al. Control of severe pain in children with terminal malignancy. J Pediatr 1995; 126: 653–7

    Article  PubMed  CAS  Google Scholar 

  177. Miser AW, Davis DM, Hughes CS. Continuous subcutaneous infusion of morphine in children with cancer. Am J Dis Child 1983; 137: 383–5

    PubMed  CAS  Google Scholar 

  178. Miser AW, Miser JS, Clark C. Continuous intravenous infusion of morphine sulfate for control of severe pain in children with terminal malignancy. J Pediatr 1980; 96: 930–2

    Article  PubMed  CAS  Google Scholar 

  179. Collins JJ, Berde CB, Grier HE, et al. Massive opioid resistance in an infant with a localized metastasis to the midbrain periaqueductal gray. Pain 1995; 63: 271–5

    Article  PubMed  CAS  Google Scholar 

  180. Koppert W, Schmelz M. The impact of opioid-induced hyperalgesia for postoperative pain. Best Pract Res Clin Anaesthesiol 2007; 21: 65–83

    Article  PubMed  CAS  Google Scholar 

  181. Angst MS, Clark JD. Opioid-induced hyperalgesia. Anesthesiology 2006; 104: 570–87

    Article  PubMed  CAS  Google Scholar 

  182. Heger S, Maier C, Otter K, et al. Morphine induced allodynia in a child with brain tumour. BMJ 1999; 319(7210): 627–9

    Article  PubMed  CAS  Google Scholar 

  183. Marples IL, Murray P. Morphine induced allodynia in child with brain tumour: signs are more likely to have been due to underlying medical condition [letter]. BMJ 2000; 320(7231): 381

    Article  PubMed  CAS  Google Scholar 

  184. Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 2000; 27: 524–8

    Article  PubMed  CAS  Google Scholar 

  185. Zernikow B. Schmerztherapie bei Kindern. Heidelberg: Springer Verlag, 2005

    Book  Google Scholar 

  186. Zernikow B, Bauer A, Andler W. Schmerztherapie in der pädiatrischen Onkologie: Eine Bestandsaufnahme. Schmerz 2001; 16: 140–9

    Article  Google Scholar 

  187. Maxwell LG, Kaufmann SC, Bitzer S, et al. The effects of a small-dose naloxone infusion on opioid-induced side effects and analgesia in children and adolescents treated with intravenous patient-controlled analgesia: a double-blind, prospective, randomized, controlled study. Anesth Analg 2005; 100:953–8

    Article  PubMed  CAS  Google Scholar 

  188. Cepeda MS, Africano JM, Manrique AM, et al. The combination of low dose of naloxone and morphine in PCA does not decrease opioid requirements in the postoperative period. Pain 2002; 96: 73–9

    Article  PubMed  CAS  Google Scholar 

  189. Cepeda MS, Alvarez H, Morales H, et al. Addition of ultralow dose naloxone to postoperative morphine PCA: unchanged analgesia and opioid requirement but decreased incidence of opioid side effects. Pain 2004; 107:41–6

    Article  PubMed  CAS  Google Scholar 

  190. Cheung CL, van Dijk M, Green JW, et al. Effects of low-dose naloxone on opioid therapy in pediatric patients: a retrospective case-control study. I. Intensive Care Med 2007; 33: 190–4

    Article  PubMed  CAS  Google Scholar 

  191. Dahan A. Opioid-induced respiratory effects: new data on buprenorphine. Palliat Med 2006; 20Suppl. 1: s3–8

    PubMed  Google Scholar 

  192. Johnson RE, Fudala PJ, Payne R. Buprenorphine: considerations for pain management. J Pain Symptom Manage 2005; 29(3): 297–326

    Article  PubMed  CAS  Google Scholar 

  193. Yee JD, Berde CB. Dextroamphetamine or methylphenidate as adjuvants to opioid analgesia for adolescents with cancer. J Pain Symptom Manage 1994; 9(2): 122–5

    Article  PubMed  CAS  Google Scholar 

  194. Hullett BJ, Chambers NA, Pascoe EM, et al. Tramadol vs morphine during adenotonsillectomy for obstructive sleep apnea in children. Paediatr Anaesth 2006; 16: 648–53

    Article  PubMed  Google Scholar 

  195. Tobias JD. Seizure after overdose of tramadol. South Med J 1997; 90: 826–7

    Article  PubMed  CAS  Google Scholar 

  196. Marsh DF, Hatch DJ, Fitzgerald M. Opioid systems and the newborn. Br J Anaesth 1997; 79: 787–95

    Article  PubMed  CAS  Google Scholar 

  197. Purcell-Jones G, Dormon MB, Summer BM. The use of opioids in neonates: a retrospective study of 933 cases. Anaesthesia 1987; 42: 1316–20

    Article  PubMed  CAS  Google Scholar 

  198. Davies G, Kingswood C, Street M. Pharmacokinetics of opioids in renal dysfunction. Clin Pharmacokinet 1996; 31: 410–22

    Article  PubMed  CAS  Google Scholar 

  199. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant: an ultra-rapid metabolizer. Paediatr Anaesth 2007; 17: 684–7

    Article  PubMed  Google Scholar 

  200. Magnani B, Evans R, Hegland UG, et al. Codeine intoxication in the neonate. Pediatrics 1999; 104: e75

    Article  PubMed  CAS  Google Scholar 

  201. Koren G, Cairns J, Chitayat D, et al. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368(9536): 704

    Article  PubMed  Google Scholar 

  202. Thwaites D, McCann S, Broderick P. Hydromorphone neuroexcitation. J Pall Med 2004; 7: 545–50

    Article  Google Scholar 

  203. Wright AW, Nocente ML, Smith MT. Hydromorphone-3-glucuronide: biochemical synthesis and preliminary pharmacological evaluation. Life Sci 1998; 63: 401–11

    Article  PubMed  CAS  Google Scholar 

  204. Wright AW, Mather LE, Smith MT. Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide. Life Sci 2001; 69(4): 409–20

    Article  PubMed  CAS  Google Scholar 

  205. Karir V. Bradycardia associated with intravenous methadone administered for sedation in a patient with acute respiratory distress syndrome. Pharmacotherapy 2002; 22: 1196–9

    Article  PubMed  Google Scholar 

  206. Wheeler AD, Tobias JD. Bradycardia during methadone therapy in an infant. Pediatr Crit Care Med 2006; 7: 83–5

    Article  PubMed  Google Scholar 

  207. Lugo RA, Satterfield KL, Kern SE. Pharmacokinetics of methadone. J Pain Palliat Care Pharmacother 2005; 19(4): 13–24

    Article  PubMed  Google Scholar 

  208. Friesen RH, Carpenter E, Madigan CK, et al. Oral transmucosal fentanyl citrate for preanaesthetic medication of paediatric cardiac surgery patients. Paediatr Anaesth 1995; 5: 29–33

    Article  PubMed  CAS  Google Scholar 

  209. Goldstein-Dresner MC, Davis PJ, Kretchman E, et al. Double-blind comparison of oral transmucosal fentanyl citrate with oral meperidine, diazepam, and atropine as preanesthetic medication in children with congenital heart disease. Anesthesiology 1991; 74(1): 28–33

    Article  PubMed  CAS  Google Scholar 

  210. Epstein RH, Mendel HG, Witkowski TA, et al. The safety and efficacy of oral transmucosal fentanyl citrate for preoperative sedation in young children. Anesth Analg 1996; 83(6): 1200–5

    PubMed  CAS  Google Scholar 

  211. Feld LH, Champeau MW, van Steenis CA, et al. Preanesthetic medication in children: a comparison of oral transmucosal fentanyl citrate versus placebo. Anesthesiology 1989; 71(3): 374–7

    Article  PubMed  CAS  Google Scholar 

  212. Klein EJ, Diekema DS, Paris CA, et al. A randomized, clinical trial of oral midazolam plus placebo versus oral midazolam plus oral transmucosal fentanyl for sedation during laceration repair. Pediatrics 2002; 109(5): 894–7

    Article  PubMed  Google Scholar 

  213. Schlechter NL, Weisman SJ, Rosenblum M, et al. The use of oral transmucosal fentanyl citrate for painful procedures in children. Paediatr Anaesth 1995; 5: 29–33

    Article  Google Scholar 

  214. Howell TK, Smith S, Rushman SC, et al. A comparison of oral transmucosal fentanyl and oral midazolam for premedication in children. Anaesthesia 2002; 57(8): 798–805

    Article  PubMed  CAS  Google Scholar 

  215. Sharar SR, Bratton SL, Garrougher MN, et al. A comparison of oral transmucosal fentanyl citrate and oral hydromorphone for inpatient pediatric burn wound care analgesia. J Burn Care Rehabil 1998; 19: 516–21

    Article  PubMed  CAS  Google Scholar 

  216. Dahan A, Yassen A, Romberg R, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth 2006; 96: 627–32

    Article  PubMed  CAS  Google Scholar 

  217. Hamunen K, Olkkola KT, Maunuksela EL. Comparison of the ventilatory effects of morphine and buprenorphine in children. Acta Anaesthesiol Scand 1993; 37: 449–53

    Article  PubMed  CAS  Google Scholar 

  218. Zanette G, Manani G, Giusti F, et al. Respiratory depression following administration of low dose buprenorphine as postoperative analgesic after fentanyl balanced anaesthesia. Paediatr Anaesth 1996; 6: 419–22

    Article  PubMed  CAS  Google Scholar 

  219. Zola EM, McLeod DC. Comparative effects and analgesic efficacy of the agonist-antagonist opioids. Clin Pharmacol 1983; 17: 411–7

    CAS  Google Scholar 

  220. Gal TJ. Naloxone reversal of buprenorphine-induced respiratory depression. Clin Pharmacol Ther 1989; 45: 66–71

    Article  PubMed  CAS  Google Scholar 

  221. Rodgers BM, Webb CJ, Stergios D, et al. Patient controlled analgesia in pediatric surgery. J Pediatr Surg 1988; 23: 59–62

    Google Scholar 

  222. Melzer-Lange MD, Walsh-Kelly CM, Lea G. Patient-controlled analgesia for sickle cell pain crisis in a pediatric emergency department. Pediatr Emerg Care 2004; 20: 2–4

    Article  PubMed  Google Scholar 

  223. Gaukroger PB, Chapman MJ, Davey RB. Pain control in paediatric burns: the use of patient-controlled analgesia. Burns 1991; 17: 396–9

    Article  PubMed  CAS  Google Scholar 

  224. Trentadue NO, Kachoyeanos MK, Lea G. A comparison of two regimens of patient-controlled analgesia for children with sickle cell disease. J Pediatr Nurs 1998; 13: 15–9

    Article  PubMed  CAS  Google Scholar 

  225. Mackie AM, Coda BC, Hill HF. Adolescents use patient-controlled analgesia effectively for relief from prolonged oropharyngeal mucositis pain. Pain 1991; 46: 265–9

    Article  PubMed  CAS  Google Scholar 

  226. Dunbar PJ, Buckley P, Gavrin JR, et al. Use of patient-controlled analgesia for pain control for children receiving bone marrow transplant. J Pain Symptom Manage 1995; 10: 604–11

    Article  PubMed  CAS  Google Scholar 

  227. Collins JJ, Geake J, Grier HE, et al. Patient-controlled analgesia for mucositis pain in children: a three-period crossover study comparing morphine and hydromorphone. J Pediatr 1996; 129(5): 722–8

    Article  PubMed  CAS  Google Scholar 

  228. Anghelescu DL, Burgoyne LL, Oakes LL, et al. The safety of patient-controlled analgesia by proxy in pediatric oncology patients. Anesth Analg 2005; 101: 1623–7

    Article  PubMed  Google Scholar 

  229. Walder B, Schafer M, Henzi I, et al. Efficacy and safety of patient-controlled opioid analgesia for acute postoperative pain: a quantitative systematic review. Acta Anaesthesiol Scand 2001; 45: 795–804

    Article  PubMed  CAS  Google Scholar 

  230. Schiessl C, Gravou C, Zernikow B, et al. Use of patient-controlled analgesia for pain control in dying children. Support Care Cancer 2008; 16(5): 531–6

    Article  PubMed  Google Scholar 

  231. Doyle E, Morton NS, McNicol LR. Comparison of patient-controlled analgesia in children by IV and SC routes of administration. Br J Anaesth 1994; 72: 533–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. B. Zernikow has received consultancies from Mundipharma, JanssenCilag, Reckitt-Benckieser, and Bristol-Myers Squibb; speaking honoraria from AstraZeneca, Aventis, Boots Healthcare, Bristol-Myers Squibb, Cephalon, Grünenthal, JanssenCilag, Mundipharma, and Pfizer; and grants from AstraZeneca. E. Michel, F. Craig, and B. Anderson have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Zernikow.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zernikow, B., Michel, E., Craig, F. et al. Pediatric Palliative Care. Pediatr-Drugs 11, 129–151 (2009). https://doi.org/10.2165/00148581-200911020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200911020-00004

Keywords

Navigation