Skip to main content
Log in

Immunosuppressive Drugs in Paediatric Liver Transplantation

  • Review Article
  • Published:
Paediatric Drugs Aims and scope Submit manuscript

Abstract

Orthotopic liver transplantation is established treatment for children with acute and chronic liver failure. Despite advances in pre- and postoperative management, innovative surgical techniques and new immunosuppressive drugs, acute and chronic rejection remains a problem. In addition, well established adverse effects of commonly used immunosuppressive drugs are no longer acceptable. More potent, but less toxic, immunosuppressive agents have been developed and some novel compounds are now entering routine practice.

Cyclosporin was the cornerstone of immunosuppressive therapy until the introduction of its novel pharmaceutical form (Neoral) with improved bioavailability, lower inter- and intraindividual pharmacokinetic variability and improved graft survival. Recently, tacrolimus, a macrolide drug with a similar mode of action, but much higher potency, was introduced and, at present, is the only agent which can successfully replace cyclosporin as a first-line immunosuppressive drug.

Mycophenolate mofetil has recently been approved for use in adult and paediatric renal transplant recipients. It has a similar mode of action to cyclosporin and tacrolimus, but acts at a later stage of the T cell activation pathway. Administration with standard immunosuppressive drugs reduces the incidence of acute rejection and enables cyclosporin and tacrolimus dose reduction, thus reducing the risk of associated toxic effects.

Phase I and II trials with sirolimus (rapamycin), a macrolide antibiotic, have shown comparable immunosuppressive action, when administered in conjunction with standard immunosuppressants. Further clinical trials need to be carried out to establish efficacy, tolerability and pharmacokinetics in paediatric transplant recipients.

Monoclonal antibody therapy (daclizumab and basiliximab) is an exciting new development whereby T cell proliferation is inhibited by selective blockade of interleukin (IL)-2 receptors. Preliminary results, when used in combination with a standard immunosuppressive regimen, are good with respect to incidence of acute graft rejection, host immune response and adverse effects.

FTY720 is a novel synthetic immunosuppressive compound which induces a reduction in peripheral blood lymphocyte count through apoptotic T cell death or accelerated trafficking of T cells into lymphatic tissues. Experimental animal studies demonstrated synergistic action in combination with low dose cyclosporin or tacrolimus, potentiating their immunosuppressive effects. Further studies are being carried out to determine its potential for application in organ transplantation.

Despite this rapid development of novel compounds, it will take many years before they may become part of standard protocols in paediatric transplantation medicine. Further development and research of efficacy and tolerability of existing drugs is, therefore, vital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. McDiarmid SV, Millis MJ, Olthoff KM, et al. Indications for pediatric liver transplantation. Pediatr Transplant 1998; 2: 106–16

    PubMed  CAS  Google Scholar 

  2. Kelly DA. Current results and evolving indications for liver transplantation in children [invited review]. J Pediatr Gastroenterol Nutr 1998 Aug; 27(2): 214–21

    PubMed  CAS  Google Scholar 

  3. Salt A, Noble-Jamieson G, Barnes ND, et al. Liver transplantation in 100 children: Cambridge and King’s College Hospital series. BMJ 1992; 304: 416–21

    PubMed  CAS  Google Scholar 

  4. Beath SV, Brook GD, Kelly DA, et al. Improving outcome of liver transplantation in babies less than 1 year. Transplant Proc 1994; 26: 180–2

    PubMed  CAS  Google Scholar 

  5. De Ville De Goyet J, Hausleithner V, Reding R, et al. Impact of innovative techniques on the waiting list and results in pediatric liver transplantation. Transplantation 1993; 56: 1130–6

    PubMed  Google Scholar 

  6. Moukarzel AA, Najm I, Vargas J, et al. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients. Transplant Proc 1990; 52: 1560–3

    Google Scholar 

  7. Holt RIG, Broide E, Buchanan CR, et al. Orthotopic liver transplantation reverses the adverse nutritional changes of endstage liver disease in children. Am J Clin Nutr 1997; 65: 534–42

    PubMed  CAS  Google Scholar 

  8. Rodeck B, Melter M, Hoyer PF, et al. Growth in long-term survivors after orthotopic liver transplantation in childhood. Transplant Proc 1994; 26: 165–6

    PubMed  CAS  Google Scholar 

  9. Chin SE, Shepherd RW, Cleghorn GJ, et al. Survival, growth and quality of life in children after orthotopic liver transplantation: a 5 year experience. J Paediatr Child Health 1991; 27: 380–5

    PubMed  CAS  Google Scholar 

  10. Stone RD, Beasley PJ, Treacy SJ, et al. Children and families can achieve normal psychological adjustment and a good quality of life following pediatric liver transplantation: a long-term study. Transplant Proc 1997; 29: 1571–2

    PubMed  CAS  Google Scholar 

  11. Stewart SM, Hiltebreitel C, Nici J, et al. Neuro-psychological outcome of paediatric liver transplantation. Pediatrics 1991 Mar; 87(3): 367–76

    PubMed  CAS  Google Scholar 

  12. Stewart SM, Uauy R, Waller DA, et al. Mental and motor development, social competence and growth one year after successful pediatric liver transplantation. J Pediatrics 1989 Apr; 114 (4 Pt 1): 574–81

    CAS  Google Scholar 

  13. Hosey MT, Gorgon G, Kelly DA, et al. Oral findings in children with liver transplants. Int J Paediatr Dent 1995; 5: 27–31

    Google Scholar 

  14. Yamamoto S, Kato R. Hair growth stimulating effects of cyclosporin-A and FK506, potent immunosuppressants. J Dermatol Sci 1994; 7 Suppl.: S47–S54

    PubMed  CAS  Google Scholar 

  15. Davison SM, Murphy MS, Adeodu OO, et al. Impact of cytomegalovirus and Epstein-Barr virus infection in children following liver transplantation. Gut 1993; 34: S32

    Google Scholar 

  16. Morgan G, Superina RA. Lymphoproliferative disease after paediatric liver transplantation. J Paediatr Surg 1994 Sep; 29(9): 1192–6

    CAS  Google Scholar 

  17. Kelly DA, editor. Diseases of the liver and biliary system in children. 1st ed. London: Blackwell Science, 1999

    Google Scholar 

  18. Cox KL, Freese DK. Tacrolimus (FK506), the pros and cons of its use as immunosuppressant in paediatric liver transplantation. Clin Invest Med 1996; 19: 389–92

    PubMed  CAS  Google Scholar 

  19. Dunn S, Falkenstein K, Lawrence JP, et al. Monotherapy with cyclosporine for chronic immunosuppression in pediatric liver transplant recipients. Transplantation 1994; 57: 544–7

    PubMed  CAS  Google Scholar 

  20. Andrews WS, Shimaoka S, Sommerauer J, et al. Steroid withdrawal after pediatric liver transplantation. Transplant Proc 1994; 26: 159–60

    PubMed  CAS  Google Scholar 

  21. Balistreri WF, Bucuvalas JC, Ryckman FC. The effect of immunosuppression on growth and development. Liver Transplant Surg 1995; 1Suppl. 5: 64–73

    CAS  Google Scholar 

  22. McDiarmid SV, Gornbein JA, DeSilva PJ, et al. Factors affecting growth after pediatric liver transplantation. Transplantation 1999; 67(3): 404–11

    PubMed  CAS  Google Scholar 

  23. Superina RA, Zangari A, Acal L, et al. Growth in children following liver transplantation. Pediatr Transplant 1998; 2(1): 70–5

    PubMed  CAS  Google Scholar 

  24. Sarna S, Sipila I, Vihervuori E, et al. Growth delay after liver transplantation in childhood: studies of underlying mechanisms. Pediatr Res 1995; 38: 366–72

    PubMed  CAS  Google Scholar 

  25. Faul JL, Akindipe OA, Berry GJ, et al. Recurrent Pneumocystis carinii colonization in a heart-lung transplant recipient on long-term trimethoprim-sulfamethoxazole prophylaxis. J Heart Lung Transplant 1999; 18(4): 384–7

    PubMed  CAS  Google Scholar 

  26. Colby C, McAfee S, Sackstein R, et al. A prospective randomized trial comparing the toxicity and safety of atovaquone with trimethoprim/sulfamethoxazole as Pneumocystis carinii pneumonia prophylaxis following autologous peripheral blood stem transplantation. Bone Marrow Transplant 1999 Oct; 24(8): 897–902

    PubMed  CAS  Google Scholar 

  27. Torre-Cisneros J, De La Mata M, Pozo JC, et al. Randomized trial of weekly sulphadoxine/pyrimethamine vs daily low-dose trimethoprim-sulfamethoxazole for the prophylaxis of Pneumocystis carinii pneumonia after liver transplantation. Clin Infect Dis 1999 Oct; 29(4): 771–4

    PubMed  CAS  Google Scholar 

  28. Yatscoff RW, Aspeslet LJ, Gallant HL. Pharmacodynamic monitoring of immunosuppressive drugs. Clin Chem 1998; 44(2): 428–32

    PubMed  CAS  Google Scholar 

  29. Dervieux T, Medard Y, Baudouin V, et al. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. Br J Clin Pharmacol 1999 Dec; 48(6): 793–800

    PubMed  CAS  Google Scholar 

  30. Ishioka S, Hiyama K, Sato H, et al. Thiopurine methyltransferase genotype and the toxicity of azathioprine in Japanese. Intern Med 1999 Dec; 38(12): 944–7

    PubMed  CAS  Google Scholar 

  31. Oellerich M, Schutz E, Armstrong VW. Monitoring of cyclosporin and azathioprine in organ transplantation. Drug Metab Drug Interact 1997; 14(1): 17–31

    CAS  Google Scholar 

  32. Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997 Apr; 126(8): 608–14

    PubMed  CAS  Google Scholar 

  33. British National Formulary. British Medical Association and Royal Pharmaceutical Society of Great Britain. 1992 Sep; 24

  34. Duncan C, editor. MIMS (monthly index of medical specialities). London: Haymarket Medical, June 1999

    Google Scholar 

  35. Borel JF, Kis ZL. The discovery and development of cyclosporine (Sandimmune). Transplant Proc 1991; 23: 1867–74

    PubMed  CAS  Google Scholar 

  36. Michler RE, Fox IJ, Hardy MA. Paediatric organ transplantation: history, current status and important trends. Sandoz Transplantation Series Monograph. East Hanover (NJ): Sandoz Pharmaceuticals, 1992

    Google Scholar 

  37. Faulds D, Goa KL, Benfield P. Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 1993; 45(6): 953–1040

    PubMed  CAS  Google Scholar 

  38. Munday MR. A current understanding of the molecular mechanisms of cyclosporin A action; the immunosuppressive actions of cyclosporin A. Cyclosporin Quarterly, 4. Basel: Sandoz Pharmaceuticals, 1990

    Google Scholar 

  39. Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol 1992; 33: 39–43

    PubMed  CAS  Google Scholar 

  40. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr 1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997 Sep; 62(3): 248–60

    PubMed  CAS  Google Scholar 

  41. Cooney GF, Habucky K, Hoppu K. Cyclosporin pharmacokinetics in paediatric transplant recipients. Clin Pharmacokinet 1997; 32(6): 481–95

    PubMed  CAS  Google Scholar 

  42. Whitington PF, Alonso EM, Millis JM. Potential role of neoral in pediatric liver transplantation. Transplant Proc 1996; 28(4): 2267–9

    PubMed  CAS  Google Scholar 

  43. McDiarmid SV. Uses of Neoral in pediatric liver transplantation. Transplant Proc 1996; 28(4): 2264–6

    PubMed  CAS  Google Scholar 

  44. Trull Ak, Tan KKC, Tan L, et al. Absorption of cyclosporin from conventional and new microemulsion oral formulations in liver transplant recipients with external biliary diversion. Br J Clin Pharmacol 1995; 39: 627–31

    PubMed  CAS  Google Scholar 

  45. Superina RA, Strong DK, Acal LA, et al. Relative bioavailability of Sandimmune and Sandimmune Neoralinpediatric liver recipients. Transplant Proc 1994; 26: 2979–80

    PubMed  CAS  Google Scholar 

  46. Mikhail G, Eadon H, Leaver N, et al. An investigation of the pharmacokinetics, toxicity and clinical efficacy of Neoral cyclosporin in cystic fibrosis patients. Transplant Proc 1997; 29: 599–601

    PubMed  CAS  Google Scholar 

  47. Pescovitz MD, Puente JG, Jindal RM, et al. Improved absorption of cyclosporine for microemulsion in a pediatric liver transplant recipient with cystic fibrosis. Transplantation 1996; 61(2): 331–3

    PubMed  CAS  Google Scholar 

  48. Girault D, Haloun A, Viard L, et al. Sandimmun Neoral improves bioavailability of cyclosporin A and decreases interindividual variations in patients affected with cystic fibrosis. Transplant Proc 1995; 27: 2488–90

    PubMed  CAS  Google Scholar 

  49. Hoyer PF. Cyclosporin A (Neoral) in pediatric organ transplantation. Neoral pediatric study group. Pediatric Transplant 1998; 2(1): 35–9

    CAS  Google Scholar 

  50. Kovarik JM, Mueller EA, van Bree JB, et al. Reduced inter and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci 1994; 83: 444–6

    PubMed  CAS  Google Scholar 

  51. Mueller EA, Kovarik JM, van Bree JB, et al. Pharmacokinetics and tolerability of a microemulsion formulation of cyclosporin in renal allograft recipients: a concentration-controlled comparison with the commercial formulation. Transplantation 1994; 57: 176

    Google Scholar 

  52. Levy GA. Neoral therapy in liver transplantation. Transplant Proc 1996; 28(4): 2225–8

    PubMed  CAS  Google Scholar 

  53. Levy GA, Altraif I, Rezieg MT, et al. Cyclosporin Neoral in liver transplant recipients. Transplant Proc 1994; 26: 3184–7

    PubMed  CAS  Google Scholar 

  54. Jamieson NV, Tan L, Jamieson I, et al. Neoral in liver transplantation. Transplant Proc 1996; 28(4): 2229–31

    PubMed  CAS  Google Scholar 

  55. Van Mourik IDM, Thomson M, Kelly DA. Comparison of pharmacokinetics of Neoral and Sandimmune in stable pediatric liver transplant recipients. Liver Transplant Surg 1999; 5(2): 107–11

    Google Scholar 

  56. Loss GE, Brady L, Grewal HP, et al. Cyclosporine versus cyclosporine microemulsion in pediatric liver transplant recipients. Transplant Proc 1998; 30: 1435–6

    PubMed  CAS  Google Scholar 

  57. Melter M, Rodeck B, Kardoff R, et al. Pharmacokinetics of cyclosporin in pediatric long-term liver transplant recipients converted from Sandimmune to Neoral. Transplant Int 1997; 10: 419–25

    CAS  Google Scholar 

  58. Van Mourik IDM, Vilca Melendez H, Thomson M, et al. Efficacy of Neoral in the immediate post operative period in children post liver transplantation. Liver Transplant Surg 1998; 4(6): 491–8

    Google Scholar 

  59. Pinson CW, Chapman WC, Wright JK, et al. Experience with Neoral versus Sandimmune in primary liver transplant recipients. Transplant Int 1998; 11Suppl. 1: S278–S83

    Google Scholar 

  60. Dunn SP, Cooney GF, Kulinski A, et al. Absorption characteristics of a microemulsion formulation of cyclosporine in de novo pediatric liver transplant recipients. Transplantation 1995; 60(12): 1438–42

    PubMed  CAS  Google Scholar 

  61. Kattner A, Ringe B, Haller GW, et al. Early use and oral absorption of cyclosporine Neoral after liver transplantation. Transplant Proc 1998; 30: 1422–3

    PubMed  CAS  Google Scholar 

  62. Frei UA, Neumayer HH, Buchholz B, et al. Randomized, doubleblind, one-year study of the safety and tolerability of cyclosporine microemulsion compared with conventional cyclosporine in renal transplant patients. International Sandimmun Neoral study group. Transplantation 1998; 65(11): 1455–60

    PubMed  CAS  Google Scholar 

  63. Kabasakul SC, Clarke M, Kane H, et al. Comparison of Neoral and Sandimmun cyclosporin A pharmacokinetic profiles in young renal transplant recipients. Pediatr Nephrol 1997; 11(3): 318–21

    PubMed  CAS  Google Scholar 

  64. Hoyer PF, Boekenkamp A, Vester G, et al. Conversion from Sandimmune to Neoral and induction therapy with Neoral in pediatric renal transplant recipients. Transplant Proc 1996; 28(4): 2259–61

    PubMed  CAS  Google Scholar 

  65. Freise CE, Galbraith CA, Nikolai BJ, et al. Risks associated with conversion of stable patients after liver transplantation to the microemulsion formulation of cyclosporine. Transplantation 1998; 65(7): 995–7

    PubMed  CAS  Google Scholar 

  66. Fernandez-Fresnedo G, Escallada R, Casafont F, et al. Cyclosporine conversion from conventional to microemulsion formulation: effect on renal concentration ability in stable hepatic transplant recipients. Transplant Proc 1997; 29: 547–8

    PubMed  CAS  Google Scholar 

  67. Van Mourik IDM, Nagle A, Kelly DA. Conversion from Sandimmun to neoral in stable paediatric liver transplant recipients [abstract 236A]. Hepatology 1997; 26Suppl. 4: 432

    Google Scholar 

  68. Murphy MS, Harrison R, Davies P, et al. Risk factors for rejection: evidence to suggest enhanced allograft tolerance in infancy. Arch Dis Child 1996; 75: 502–6

    PubMed  CAS  Google Scholar 

  69. Winkler M, Brinkmann C, Jost U, et al. Long-term side effects of cyclosporin-based immunosuppression in patients after liver transplantation. Transplant Proc 1994; 26: 2679–82

    PubMed  CAS  Google Scholar 

  70. Azoulay D, Lemoine A, Dennison A, et al. Incidence of adverse reactions to cyclosporine after liver transplantation is predicted by the first blood level. Hepatology 1993; 18: 1123–6

    Google Scholar 

  71. Curtis JJ. Renovascular elements of the cyclosporin injury. Transplant Proc 1996; 28: 2094–6

    PubMed  CAS  Google Scholar 

  72. European FK506 Multicentre Liver Study Group. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994; 344: 423–8

    Google Scholar 

  73. Ellis D, Gabriel ME, Ellis MP. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1 cells. Possible implications in bloodpressure regulation. Transplantation 1991; 52(2): 349–53

    PubMed  CAS  Google Scholar 

  74. Bolkenkamp S, Offner G, Hoyer PF, et al. Improved absorption of cyclosporin A from a new microemulsion formulation: implications for dosage and monitoring. Paediatr Nephrol 1995; 9: 196

    Google Scholar 

  75. Cilio MR, Danhaive O, Gadisseux JF, et al. Unusual cyclosporin related neurological complications in recipients of liver transplants. Arch Dis Child 1993; 68: 405–7

    PubMed  CAS  Google Scholar 

  76. Lavenstein B, Stewart C, Tina LU. Cyclosporin-associated encephalopathy in childhood transplant patients. Transplant Proc 1998; 20 (Suppl.): 285–7

    Google Scholar 

  77. Hauben M. Cyclosporine neurotoxicity. Pharmacotherapy 1996; 16(4): 576–83

    PubMed  CAS  Google Scholar 

  78. Yamamoto S, Kato R. Hair growth stimulating effects of cyclosporine-A and FK506, potent immunosuppressants. J Dermatol Sci 1994; 7 (Suppl.): S47–54

    PubMed  CAS  Google Scholar 

  79. Chugh KS, Sharma SC, Singh V, et al. Spectrum of dermatological lesions in renal allograft recipients in a tropical environment. Dermatology 1994; 188: 108–12

    PubMed  CAS  Google Scholar 

  80. Bencini PL, Montagnino G, Sala F, et al. Cutaneous lesions in 67 cyclosporine-treated renal transplant recipients. Dermatologica 1986; 172: 24–30

    PubMed  CAS  Google Scholar 

  81. Ross PJ, Nazif MM, Zullo T, et al. Effects of cyclosporin A on gingival status following liver transplantation. J Dent Child 1989; 56: 56–9

    CAS  Google Scholar 

  82. O’Valle F, Mesa F, Aneiros J, et al. Gingival overgrowth induced by nifedipine and cyclosporine A. Clinical and morphometric study with image analysis. J Clin Periodontol 1995; 22(8): 591–7

    PubMed  Google Scholar 

  83. Pascual J, Torrelo A, Teruel JL, et al. Cutaneous T cell lymphomas after renal transplantation. Transplantation 1992; 53: 1143–5

    PubMed  CAS  Google Scholar 

  84. McGregor JM, Yu CC, Cotter FE, et al. Post transplant cutaneous lymphoma. J Am Acad Dermatol 1993; 29(4): 549–54

    PubMed  CAS  Google Scholar 

  85. Windebank AJ. The vehicle for cyclosporine is neurotoxic in vitro. Ann Neurol 1997 Apr; 41(4): 563–4

    PubMed  CAS  Google Scholar 

  86. Volcheck GW, Van Dellen RG. Anaphylaxis to intravenous cyclosporine and tolerance to oral cyclosporine: case report and review. Ann Allergy Asthma Immunol 1998 Feb; 80(2): 159–63

    PubMed  CAS  Google Scholar 

  87. Liau-Chu M, Theis JG, Koren G. Mechanism of anaphylactoid reactions: improper preparation of high-dose intravenous cyclosporine leads to bolus infusion of Cremophor EL and cyclosporine. Ann Pharmacother 1997 Nov; 31(11): 1287–91

    PubMed  CAS  Google Scholar 

  88. Mackie FE, Umetsu D, Salvatierra O, et al. Pulmonary capillary leak syndrome with intravenous cyclosporin A in pediatric renal transplantation. Pediatr Transplant 2000 Feb; 4(1): 35–8

    PubMed  CAS  Google Scholar 

  89. Paradis K, Al Edreesi M, St-Vil D, et al. Cyclosporine kinetics in paediatric liver transplant recipients: impact on dose fragmentation on true glomerular filtration rate. Transplant Proc 1994; 26(5): 2777–8

    PubMed  CAS  Google Scholar 

  90. Cyclosporin Neoral: summary of product characteristics. Frimley, Surrey: Novartis Pharmaceuticals UK, 1996

  91. Cooney GF, Lum BL, Meligeni JA, et al. Pharmacokinetics of a microemulsion formulation of cyclosporin in pediatric liver transplant recipients. Transplant Proc 1996; 28(4): 2270–2

    PubMed  CAS  Google Scholar 

  92. Cantarovich M, Barkun J, Besner J-G, et al. Cyclosporine peak levels provide a better correlation with the area-under-the-curve than trough levels in liver transplant patients treated with Neoral. Transplant Proc 1998; 30: 1462–3

    PubMed  CAS  Google Scholar 

  93. Wallemacq PE, Reding R, Sokal EM, et al. Clinical pharmacokinetics of Neoral in pediatric recipients of primary liver transplants. Transplant Int 1997; 10(6): 466–70

    CAS  Google Scholar 

  94. Schreiber RA, Scharma A, Drouin E, et al. Cyclosporin Neoral kinetics in stable paediatric transplant recipients treated with diltiazem [abstract]. Hepatology 1996; 24 (Pt 2): 304A

    Google Scholar 

  95. Del Rial M, Frias S, Argento J, et al. Convenience of level of cyclosporine-Neoral at time 3 to determine the area under the curve in renal transplant. Transplant Proc 1997; 29: 292–3

    PubMed  CAS  Google Scholar 

  96. Sindhi R, Shah J, Foley L, et al. Abbreviating area under the curve further: a practical approach to monitoring extended pharmacokinetics with Neoral. Transplant Proc 1998; 30: 1197–8

    PubMed  CAS  Google Scholar 

  97. Bennett WM. What is the effect of grapefruit juice on cyclosporine pharmacokinetics? Pediatr Nephrol 1995; 9: 10

    PubMed  CAS  Google Scholar 

  98. Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet 1997 Aug; 33(2): 103–21

    PubMed  CAS  Google Scholar 

  99. Edwards DJ, Fitzsimmons ME, Schuetz EG. 6′,7′-dihydrobergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A, and P-glycoprotein. Clin Pharmacol Ther 1999 Mar; 65(3): 237–44

    PubMed  CAS  Google Scholar 

  100. Kino T, Hatanaka H, Miyata S, et al. FK506, a novel immunosuppressant isolated from a Streptomyces. Immunosuppressive effect of FK506 in vitro. J Antibiot 1987; 40: 1256–65

    PubMed  CAS  Google Scholar 

  101. Liu J, Farmer JDJ, Lane WS, et al. Calcineurin is a common target of cyclophillin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807–15

    PubMed  CAS  Google Scholar 

  102. Morris RE, Wu J, Shorthouse R. Comparative immunopharmacologic effect of FK506 and CyA in vivo models of organ transplantation. Transplant Proc 1990; 22: 110–2

    PubMed  CAS  Google Scholar 

  103. Sawada S, Suzuki G, Kawase Y, et al. Novel immunosuppressive agent, FK506. In vitro effects on the cloned T cell activation. J Immunol 1987; 139(6): 1797–803

    PubMed  CAS  Google Scholar 

  104. Mekki O, Carrier S. The effect of food on oral bioavailability of tacrolimus (FK506) in liver transplant recipients [abstract]. Clin Pharmacol Ther 1993; 53(2): 229

    Google Scholar 

  105. Venkataramanan R, Jain A, Warty VS, et al. Pharmacokinetics of FK506: preclinical and clinical studies. Transplant Proc 1991; 22: 52–6

    Google Scholar 

  106. Pichard L, Fabre J, Domergue J, et al. Effect of FK506 on human hepatic cytochromes P-450: interaction with CyA. Transplant Proc 1991; 23: 2791–3

    PubMed  CAS  Google Scholar 

  107. Jain A, Fung JJ, Venkataramanan R, et al. Comparative study of cyclosporine and FK506 dosage requirement in adult and pediatric orthotopic liver transplant patients. Transplant Proc 1991; 23: 2763–6

    PubMed  CAS  Google Scholar 

  108. McDiarmid SV, Colonna JO, Shaked A, et al. Differences in oral FK506 requirements between adult and pediatric liver transplant patients. Transplantation 1993; 55: 1328–32

    PubMed  CAS  Google Scholar 

  109. McDiarmid SV. The use of tacrolimus in pediatric liver transplantation. J Pediatr Gastroenterol Nutr 1998; 26: 90–102

    PubMed  CAS  Google Scholar 

  110. Starzl TE, Todo S, Fung J, et al. FK506 for liver, kidney and pancreas transplantation. Lancet 1989;: 1000–4

    Google Scholar 

  111. Fung JJ, Todo S, Jain A, et al. Conversion from cyclosporin to FK506 in liver allograft recipients with cyclosporine-related complications. Transplant Proc 1990; 22: 6–12

    PubMed  CAS  Google Scholar 

  112. Fung JJ, Todo S, Tzakis A, et al. Conversion of liver allograft recipients from cyclosporine to FK506-based immunosuppression: benefits and pitfalls. Transplant Proc 1991; 23: 14–21

    PubMed  CAS  Google Scholar 

  113. Egawa H, Esquivel CO, So SK, et al. FK506 conversion therapy in pediatric liver transplantation. Transplantation 1994; 57(8): 1169–73

    PubMed  CAS  Google Scholar 

  114. Reding R, Wallemacq PE, Lamy ME, et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Transplantation 1994; 57: 93–100

    PubMed  CAS  Google Scholar 

  115. European FK506 Multicentre Liver Study Group. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994; 344: 423–8

    Google Scholar 

  116. The U.S. Multicenter FK506 Liver Study Group. Acomparison of tacrolimus (FK506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 1994; 331: 1110–5

    Google Scholar 

  117. Fung JJ, Todo S, Tzakis A, et al. Current status of FK506 in liver transplantation. Transplant Proc 1991; 23: 1902–5

    PubMed  CAS  Google Scholar 

  118. Fung JJ, Abu-Elmagd K, Jain A, et al. A randomized trial of primary liver transplantation under immunosuppression with FK506 versus cyclosporine. Transplant Proc 1991; 23: 2977–83

    PubMed  CAS  Google Scholar 

  119. Tzakis AG, Reyes J, Todo S, et al. FK506 versus cyclosporine in pediatric liver transplantation. Transplant Proc 1991; 23: 3010–5

    PubMed  CAS  Google Scholar 

  120. Tzakis AG, Reyes J, Todo S, et al. Two-year experience with FK506 in pediatric patients. Transplant Proc 1993; 25: 619–21

    PubMed  CAS  Google Scholar 

  121. McDiarmid SV, Busuttil RW, Ascher NL, et al. FK506 (tacrolimus) compared with cyclosporine for primary immunosuppression after pediatric liver transplantation. Transplantation 1995, 59: 530–6

    PubMed  CAS  Google Scholar 

  122. Shapiro R, Fung JJ, Jain A, et al. The side effects of FK506 in humans. Transplant Proc 1990; 22: 35

    PubMed  CAS  Google Scholar 

  123. Poryako MK, Textor SC, Krom RAF, et al. Nephrotoxicity of FK506 and cyclosporine when used as primary immunosuppression in liver transplant recipients. Transplant Proc 1993; 25: 665

    Google Scholar 

  124. McCauley J, Takaya S, Fung JJ, et al. The question of FK506 nephrotoxicity after liver transplantation. Transplant Proc 1991; 23: 1444

    PubMed  CAS  Google Scholar 

  125. McDiarmid SV, Colonna JO, Shaked A, et al. A comparison of renal function in cyclosporine and FK506 treated patients after primary orthotopic liver transplantation. Transplantation 1993; 56: 847

    PubMed  CAS  Google Scholar 

  126. Eidelman BH, Abu-Elmagd K, Wilson JM, et al. Neurologic complications of FK506. Transplant Proc 1992; 24: 3175

    Google Scholar 

  127. Van Thiel DH, Iqbal M, Jain A, et al. Gastrointestinal and metabolic problems associated with immunosuppression with either CyA or FK506 in liver transplantation. Transplant Proc 1990; 22: 37–40

    PubMed  Google Scholar 

  128. Krentz AJ, Dmitrewski J, Mayer D, et al. Postoperative glucose metabolism in liver transplant recipients. Atwo-yearprospective randomized study of cyclosporine versus FK506. Transplantation 1994; 57: 1666–9

    PubMed  CAS  Google Scholar 

  129. Atkinson P, Joubert G, Barron A, et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant recipients. Lancet 1995; 345: 894–6

    Google Scholar 

  130. Cox KL, Lawrence-Miyasaki LS, Garcia-Kennedy R, et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. Transplantation 1995; 59: 524–9

    PubMed  CAS  Google Scholar 

  131. Newell KA, Alonso EM, Whitington PF, et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Transplantation 1996; 62: 370–5

    PubMed  CAS  Google Scholar 

  132. Ho M, Jaffe R, Miller G, et al. The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 1988; 45: 719–27

    PubMed  CAS  Google Scholar 

  133. Nalesnik MA, Lacker J, Jaffe R, et al. Experience with posttransplant lymphoproliferative disorders in solid organ transplant recipients. Clin Transplant 1992; 6: 249–52

    PubMed  Google Scholar 

  134. Ascher NL. Early diagnosis of posttransplant lymphoproliferative disorder. Liver Transplant Surg 1997; 3(5): 545–6

    Google Scholar 

  135. Green M, Reyes J, Jabbour N, et al. Use of quantitative PCR to predict onset of Epstein-Barr viral infection and posttransplant lymphoproliferative disease after intestinal transplantation in children. Transplant Proc 1996; 28: 2759–60

    PubMed  CAS  Google Scholar 

  136. Prograf® (tacrolimus) product monograph, update 1995. London: Fujisawa, 1995

  137. Florey HW, Gilliver K, Jennings MA, et al. Mycophenolic acid: an antibiotic from Penicillium brevicompactum Dierckx. Lancet 1946; I: 46–9

    Google Scholar 

  138. Lipsky JL. Mycophenolate mofetil. Drug profile. Lancet 1996; 348: 1357–9

    PubMed  CAS  Google Scholar 

  139. Mycophenolate mofetil for the transplanted kidney? Drug Ther Bull 1997; 35(5): 38–40

    Google Scholar 

  140. Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993; 136: 5–28

    PubMed  CAS  Google Scholar 

  141. Fulton B, Markham A. Mycophenolate mofetil: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy inrenal transplantation. Drugs 1996; 51(2): 278–98

    PubMed  CAS  Google Scholar 

  142. Bullingham RES, Monroe S, Nicholls A, et al. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol 1996; 36: 315–24

    PubMed  CAS  Google Scholar 

  143. Bullingham RES, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil: a short review. Transplant Proc 1996; 28: 925–9

    PubMed  CAS  Google Scholar 

  144. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 1995; 345: 1321–5

    Google Scholar 

  145. Fisher RA, Ham JM, Marcos A, et al. A prospective randomized trial of mycophenolate mofetil with Neoral or tacrolimus after orthotopic liver transplantation. Transplantation 1998; 66(12): 1616–21

    PubMed  CAS  Google Scholar 

  146. Renz JF, Lightdale J, Mudge C, et al. Mycophenolate mofetil, microemulsion cyclosporine, and prednisone as primary immunosuppression for pediatric liver transplant recipients. Liver Transplant Surg 1999; 5(2): 136–43

    CAS  Google Scholar 

  147. Hebert MF, Ascher NL, Lake JR, et al. Four-year follow-up of mycophenolate mofetil for graft rescue in liver allograft recipients. Transplantation 1999; 67(5): 707–12

    PubMed  CAS  Google Scholar 

  148. McDiarmid SV. Mycophenolate mofetil in liver transplantation. Clin Transplant 1996; 10 (1 Pt): 140–5

    PubMed  CAS  Google Scholar 

  149. Eckhoff DE, McGuire BM, Frenette LR, et al. Tacrolimus (FK506) and mycophenolate mofetil therapy versus tacrolimus in adult liver transplantation. Transplantation 1998; 65(2): 180–7

    PubMed  CAS  Google Scholar 

  150. Jain AB, Hamad I, Rakela J, et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients: an interim report. Transplantation 1998; 66(10): 1395–8

    PubMed  CAS  Google Scholar 

  151. Stegall MD, Wachs ME, Everson G, et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate mofetil: a prospective trial of cyclosporine and tacrolimus. Transplantation 1997; 64(12): 1755–60

    PubMed  CAS  Google Scholar 

  152. Paterson DL, Singh N, Panebianco A, et al. Infectious complications occurring in liver transplant recipients receiving mycophenolate mofetil. Transplantation 1998; 66(5): 593–8

    PubMed  CAS  Google Scholar 

  153. Groth CG. Immunosuppressive regimens of tomorrow. Transplant Proc 1995; 27: 2971–3

    PubMed  CAS  Google Scholar 

  154. Groth CG, Brattström C, Claesson K, et al. New trials in transplantation: how to exploit the potential of sirolimus in clinical transplantation. Transplant Proc 1998; 30: 4064–5

    PubMed  CAS  Google Scholar 

  155. Granger DK, Cromwell JW, Canafax DM, et al. Combined rapamycin and cyclosporine immunosuppression in a porcine renal transplant model. Transplant Proc 1996; 28: 984

    PubMed  CAS  Google Scholar 

  156. Trepanier DJ, Gallant H, Legatt DF, et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998; 31(5): 345–51

    PubMed  CAS  Google Scholar 

  157. Brattström C, Tydén G, Säwe J, et al. A randomized, doubleblind, placebo-controlled study to determine safety, tolerance, and preliminary pharmacokinetics of ascending single doses of orally administered sirolimus (rapamycin) in stable renal transplant recipients. Transplant Proc 1996; 28: 985–6

    PubMed  Google Scholar 

  158. Johnson EM, Zimmerman J, Duderstadt K, et al. Arandomized, double-blind, placebo-controlled study of the safety, tolerance, and preliminary pharmacokinetics of ascending single doses of orally administered sirolimus (rapamycin) in stable renal transplant recipients. Transplant Proc 1996; 28: 987

    PubMed  CAS  Google Scholar 

  159. Murgia MG, Jordan S, Kahan BD. The side effect profile of sirolimus: a phase study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int 1996; 49: 209–16

    PubMed  CAS  Google Scholar 

  160. Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66(8): 1040–6

    PubMed  CAS  Google Scholar 

  161. Kirkman RL. New usage paradigms in antibody therapy: induction or true prophylaxis? Transplant Proc 1999; 31: 1234–5

    PubMed  CAS  Google Scholar 

  162. Mulloy LL, Wright F, Hall ML, et al. Simulect (basiliximab) reduces acute cellular rejection in renal allografts from cadaveric and living donors. Transplant Proc 1999; 31: 1210–3

    PubMed  CAS  Google Scholar 

  163. Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. Transplantation 1999; 67(2): 276–85

    PubMed  CAS  Google Scholar 

  164. Yamashita K, Nomura M, Omura T, et al. Effects of a novel immunosuppressant, FTY720, on heart and liver transplantation in rats. Transplant Proc 1999; 31: 1178–9

    PubMed  CAS  Google Scholar 

  165. Yanagawa Y, Hoshino Y, Kataoka H, et al. FTY720, a novel immunosuppressant, prolongs rat skin allograft survival by decreasing T-cell infiltration into grafts. Transplant Proc 1999; 31: 1227–9

    PubMed  CAS  Google Scholar 

  166. Suzuki T, Shimamura T, Jin MB, et al. Dose-dependent study of a novel immunosuppressant, FTY720, with the canine renal allograft transplantation model. Transplant Proc 1999; 31: 1208–9

    PubMed  CAS  Google Scholar 

  167. Hoshino Y, Yanagawa Y, Ohtsuki M, et al. FTY720, a novel immunosuppressant, shows a synergistic effect in combination with FK506 in rat allograft models. Transplant Proc 1999; 31: 1224–6

    PubMed  CAS  Google Scholar 

  168. Wang M-E, Tejpal N, Qu X, et al. Immunosuppressive effects of FTY720 alone or in combination with cyclosporine and/or sirolimus. Transplantation 1998; 65(7): 899–905

    PubMed  CAS  Google Scholar 

  169. Kunikata S, Nagano T, Nishioka T, et al. Immunosuppressive action of FTY720 for renal allograft in a rat model. Transplant Proc 1999; 31: 1157–9

    PubMed  CAS  Google Scholar 

  170. Contreras JL, Wang PX, Eckhoff DE, et al. Peritransplanttolerance induction with anti-CD3-immunotoxin: a matter of pro-inflammatory cytokine control. Transplantation 1998; 65(9): 1159–69

    PubMed  CAS  Google Scholar 

  171. Thomas JM, Contreras JL, Jiang XL, et al. Peritransplant tolerance induction in macaques: early events reflecting the unique synergy between immunotoxin and deoxyspergualin. Transplantation 1999; 68(11): 1660–73

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. M. van Mourik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Mourik, I.D.M., Kelly, D.A. Immunosuppressive Drugs in Paediatric Liver Transplantation. Paediatr Drugs 3, 43–60 (2001). https://doi.org/10.2165/00128072-200103010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200103010-00004

Keywords

Navigation