Using nonlocal empirical pseudopotentials, we compute the band structure and shear deformation potentials of strained Si, Ge, and SiGe alloys. Fitting the theoretical results to experimental data on the phonon‐limited carrier mobilities in bulk Si and Ge, the dilatation deformation potential Ξd is found to be 1.1 eV for the Si Δ minima, −4.4 eV for the Ge L minima, corresponding to a value for the valence band dilatation deformation potential a of approximately 2 eV for both Si and Ge. The optical deformation potential d0 is found to be 41.45 and 41.75 eV for Si and Ge, respectively. Carrier mobilities in strained Si and Ge are then evaluated. The results show a large enhancement of the hole mobility for both tensile and compressive strain along the [001] direction, but only a modest enhancement (approximately 60%) of the electron mobility for tensile biaxial strain in Si. Finally, from a fit to carrier mobilities in relaxed SiGe alloys, the effective alloy scattering potential is determined to be about 0.7 eV for electrons, 0.9±0.1 eV for holes, and the low‐field mobilities in strained alloys can be evaluated. The results show that alloy scattering completely cancels any gain expected from the lifting of the valleys/bands degeneracy caused by the strain.

1.
C. G.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
34
,
5621
(
1986
).
2.
M.
Gell
,
Phys. Rev. B
38
,
7535
(
1988
);
M.
Gell
,
41
,
7611
(
1990
).,
Phys. Rev. B
3.
P.
Friedel
,
M. S.
Hybertsen
, and
M.
Schlüter
,
Phys. Rev. B
39
,
7974
(
1989
).
4.
M. M.
Rieger
and
P.
Vogl
,
Phys. Rev. B
48
,
14276
(
1993
).
5.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
6.
S.
Krishnamurthy
,
A.
Sher
, and
A.-B.
Chen
,
Phys. Rev. B
33
,
1026
(
1986
).
7.
C.
Tserbak
,
H. M.
Polatoglou
, and
G.
Theodorou
,
Phys. Rev. B
47
,
7104
(
1993
).
8.
Q. M.
Ma
,
K. L.
Wang
, and
J. N.
Schulman
,
Phys. Rev. B
47
,
1936
(
1993
).
9.
Zhi-Zong
Xu,
Phys. Rev. B
47
,
3642
(
1993
).
10.
K.
Takeda
,
A.
Taguchi
, and
M.
Sakata
,
J. Phys. C
16
,
2237
(
1983
).
11.
J. M.
Hinckley
and
J.
Singh
,
Phys. Rev. B
41
,
2912
(
1990
).
12.
J. M.
Hinckley
and
J.
Singh
,
J. Appl. Phys.
76
,
4192
(
1994
).
13.
D. K.
Nayak
and
S. K.
Chun
,
Appl. Phys. Lett.
64
,
2515
(
1994
).
14.
D. K.
Nayak
,
J. C. S.
Woo
,
J. S.
Park
,
K. L.
Wang
, and
K. P.
MacWilliams
,
Appl. Phys. Lett.
62
,
2853
(
1993
).
15.
S. K.
Chun
and
K. L.
Wang
,
IEEE Trans. Electron Devices
39
,
2153
(
1992
).
16.
T.
Manku
and
A.
Nathan
,
IEEE Trans. Electron Devices
39
,
2082
(
1992
).
17.
T.
Manku
,
J. M.
McGregor
,
A.
Nathan
,
D. J.
Roulston
,
J.-P.
Noel
, and
D. C.
Houghton
,
IEEE Trans. Electron Devices
40
,
1990
(
1993
).
18.
Th.
Vogelsang
and
K. R.
Hofmann
,
IEEE Trans. Electron Devices
39
,
2641
(
1992
).
19.
Th.
Vogelsang
and
K. R.
Hofmann
,
Appl. Phys. Lett.
63
,
186
(
1993
).
20.
H.
Miyata
,
T.
Yamada
, and
D. K.
Ferry
,
Appl. Phys. Lett.
62
,
2661
(
1993
).
21.
T.
Yamada
and
D. K.
Ferry
,
Solid State Electron.
38
,
881
(
1995
).
22.
J. R.
Chelikowsky
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
23.
C.
Smith
and
M. E.
Jones
,
Superlatt. Microstruct.
4
,
391
(
1988
).
24.
K.
Ismail
,
B. S.
Meyerson
, and
P. J.
Wang
,
Appl. Phys. Lett.
58
,
2117
(
1991
).
25.
S. F.
Nelson
,
K.
Ismail
,
J. O.
Chu
, and
B. S.
Meyerson
,
Appl. Phys. Lett.
63
,
367
(
1993
).
26.
Y. J.
Mii
,
Y. H.
Xie
,
E. A.
Fitzgerald
,
D.
Monroe
,
F. A.
Thiel
,
B. E.
Weir
, and
L. C.
Feldman
,
Appl. Phys. Lett.
59
,
1611
(
1991
).
27.
D. Monroe, Y. H. Xie, E. A. Fitzgerald, and P. J. Silverman, in Semiconductor Heterostructures for Photonic and Electronic Applications Symposium 1993 (Mater. Res. Soc., Boston, MA, 1993), p. 449.
28.
J. Welser, J. L. Hoyt, and J. F. Gibbons, IEDM Technol. Dig. p. 373 (1994).
29.
U.
König
,
A. J.
Boers
,
F.
Schaffler
, and
E.
Kasper
,
Electron. Lett.
28
,
160
(
1992
).
30.
F.
Stern
and
S. E.
Laux
,
Appl. Phys. Lett.
61
,
1110
(
1992
).
31.
P. K.
Basu
and
S. K.
Paul
,
J. Appl. Phys.
71
,
3617
(
1993
).
32.
K.
Ismail
,
J. O.
Chu
, and
B. S.
Meyerson
,
Appl. Phys. Lett.
64
,
3124
(
1994
).
33.
We employ here the definition of the “strain tensor“ given, for example, by C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), Chap. 4. According to this definition, the off-diagonal components, eij, of the strain tensor are related to the off-diagonal components, eij, of the “deformation matrix“ (mapping the coordinates of points in the unstrained lattice to those in the strained lattice) by eij = εijji. A different definition is sometimes used in the literature (e.g., Refs. 1 and 5), identifying the off-diagonal components of the strain tensor with those of the symmetrized deformation matrix, i.e., eij = (εijji)/2.
34.
R. A.
Logan
,
J. M.
Rowell
, and
F. A.
Trumbore
,
Phys. Rev.
136
,
A1751
(
1964
).
35.
O. H.
Nielsen
and
R. M.
Martin
,
Phys. Rev. B
32
,
3792
(
1985
).
36.
Physics of Group IV Elements and III-V Compounds, edited by O. Madelung, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 17a (Springer-Verlag, Berlin, 1982).
37.
Rigorous application of the rigid-ion approximation obviously requires the atomic volume ωa to be rescaled when handling strained Si, Ge, or alloys. Instead, we have kept ωa constant in interpolating of the local components of the pseudopotentials. In view of the questionable validity of the rigidion approximation in Si and Ge, this is a simple matter of convenience. Indeed, note that the shear deformation potentials are insensitive to changes of the atomic volume, and the band-gap (dilatation) deformation potentials depend on the changes of Vs(G) with normalizing volume, ∂Vs(q)/∂ωa at q = G. Therefore, within the purely empirical pseudopotential context, practically identical results can be obtained by either using the slopes ∂Vs(G)/∂G we have used while keeping ωa fixed in Eq. (2), or using a different interpolation yielding rescaled slopes [∂Vs(q)/∂G[rescaled = ∂Vs(G)/∂G−3Vs(G)/G, while rescaling ωa
38.
S.
Bednarek
and
U.
Rössler
,
Phys. Rev. Lett.
48
,
1296
(
1982
).
39.
P. B.
Allen
and
M.
Cardona
,
Phys. Rev. B
27
,
4760
(
1983
).
40.
M. V. Fischetti and J. H. Higman, in Monte Carlo Device Simulation: Full Band and Beyond, edited by Karl Hess (Kluwer Academic, Norwell, 1991), p. 123.
41.
M. A.
Ball
,
J. Phys. C
8
,
3328
(
1975
);
M. A.
Ball
,
15
,
3328
(
1982
).,
J. Phys. C
42.
C.
Herring
and
E.
Vogt
,
Phys. Rev.
101
,
944
(
1956
).
43.
R.
People
,
Phys. Rev. B
32
,
1405
(
1985
).
44.
I.
Balslev
,
Phys. Rev.
143
,
636
(
1966
).
45.
J. D.
Wiley
,
Solid State Commun.
8
,
1865
(
1970
).
46.
L. D.
Laude
,
F. H.
Pollak
, and
M.
Cardona
,
Phys. Rev. B
3
,
2623
(
1971
).
47.
M.
Costato
and
L.
Reggiani
,
Lett. Nuovo Cimento
4
,
848
(
1970
);
M.
Costato
and
L.
Reggiani
,
Phys. Status Solidi B
58
,
471
(
1973
).
48.
M.
Cardona
and
F. H.
Pollak
,
Phys. Rev.
142
,
530
(
1966
).
49.
M.
Tiersten
,
J. Phys. Chem. Solids
25
,
1151
(
1964
).
50.
M.
Chandrasekhar
and
F. H.
Pollak
,
Phys. Rev. B
15
,
2127
(
1977
).
51.
I.
Balslev
,
Phys. Lett.
24A
,
113
(
1967
).
52.
C.
Jacoboni
and
L.
Reggiani
,
Adv. Phys.
28
,
493
(
1979
).
53.
E. V.
Starikov
and
P. N.
Shiktorov
,
Opt. Quantum Electron.
23
,
S247
(
1989
).
54.
P. D.
Yoder
,
V. D.
Natoli
, and
R. M.
Martin
,
J. Appl. Phys.
73
,
4378
(
1993
).
55.
P. D. Yoder, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1994.
56.
J. F.
Morar
and
P. E.
Batson
,
J. Vac. Sci. Technol. B
10
,
2022
(
1992
).
57.
J.
Weber
and
M. I.
Aloso
,
Phys. Rev. B
40
,
5683
(
1989
).
58.
S.
Tiwari
and
D. J.
Frank
,
Appl. Phys. Lett.
60
,
630
(
1992
).
59.
D. V.
Lang
,
R.
People
,
J. C.
Bean
, and
A. M.
Sergent
,
Appl. Phys. Lett.
47
,
1333
(
1985
).
60.
G.
Ottaviani
,
L.
Reggiani
,
C.
Canali
,
F.
Nava
, and
A.
Alberigi-Quaranta
,
Phys. Rev. B
12
,
3318
(
1975
).
61.
G.
Dresselhaus
,
A. F.
Kip
, and
C.
Kittel
,
Phys. Rev.
98
,
368
(
1955
).
62.
M.
Tiersten
,
IBM J. Res. Dev.
5
,
122
(
1961
).
63.
H.
Nakagawa
and
S.
Zukotynski
,
Can. J. Phys.
55
,
1485
(
1977
);
H.
Nakagawa
and
S.
Zukotynski
,
56
,
364
(
1977
).,
Can. J. Phys.
64.
P.
Lawaetz
,
Phys. Rev. B
4
,
3460
(
1971
).
65.
J. C.
Hensel
and
G.
Feher
,
Phys. Rev.
129
,
1041
(
1963
).
66.
T.
Manku
and
A.
Nathan
,
J. Appl. Phys.
73
,
1205
(
1993
).
67.
T. E.
Whall
,
A. D.
Plews
,
N. L.
Mattey
, and
P. J.
Phillips
,
Appl. Phys. Lett.
66
,
2725
(
1995
).
68.
S.-H.
Song
,
D. C.
Tsui
, and
F. F.
Fang
,
Solid State Commun.
96
,
61
(
1995
).
69.
J.-P.
Cheng
,
V. P.
Kesan
,
D. A.
Grutzmacher
, and
T. O.
Sedgwick
,
Appl. Phys. Lett.
64
,
1681
(
1994
).
70.
P.
Lawaetz
,
Phys. Rev.
174
,
867
(
1968
);
P.
Lawaetz
,
183
,
730
(
1969
).,
Phys. Rev.
71.
F.
Szmulowicz
,
Phys. Rev. B
28
,
5943
(
1983
).
72.
M.
Dür
,
K.
Unterrainer
, and
E.
Gornik
,
Phys. Rev. B
49
,
13
991
(
1994
).
73.
G. L.
Bir
and
G. E.
Pikus
,
Fiz. Tverd. Tela. (Leningrad)
2
,
2287
(
1960
).
G. L.
Bir
and
G. E.
Pikus
, [
Sov. Phys. Solid State
2
,
2039
(
1961
)].
74.
F. L.
Madarasz
and
F.
Szmulowicz
,
Phys. Rev. B
24
,
4611
(
1981
).
75.
H.
Ehrenreich
and
A. W.
Overhauser
,
Phys. Rev.
104
,
331
(
1956
).
76.
L.
Reggiani
,
C.
Canali
,
F.
Nava
, and
G.
Ottaviani
,
Phys. Rev. B
16
,
2781
(
1977
).
77.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
78.
J.
Dewey
and
M.
Osman
,
J. Appl. Phys.
74
,
3219
(
1993
).
79.
R.
Brunetti
,
C.
Jacoboni
,
F.
Nava
,
L.
Reggiani
,
G.
Bosman
, and
R. J. J.
Zijlstra
,
J. Appl. Phys.
52
,
6713
(
1981
).
80.
C.
Canali
,
C.
Jacoboni
,
F.
Nava
,
G.
Ottaviani
, and
A.
Alberigi-Quaranta
,
Phys. Rev. B
12
,
2265
(
1975
).
81.
C.
Jacoboni
,
F.
Nava
,
C.
Canali
, and
G.
Ottaviani
,
Phys. Rev. B
24
,
1014
(
1981
).
82.
M. V.
Fischetti
and
S. E.
Laux
,
Phys. Rev. B
48
,
2244
(
1993
).
83.
B.
Laikhtman
and
R. A.
Kiehl
,
Phys. Rev. B
47
,
10515
(
1993
).
84.
R. M.
Feenstra
and
M. A.
Lutz
,
J. Appl. Phys.
78
,
6091
(
1995
).
85.
B.
Weber
and
M.
Cardona
,
Phys. Rev. B
15
,
875
(
1977
).
86.
K.
Ismail
,
S. F.
Nelson
,
J. O.
Chu
, and
B. S.
Meyerson
,
Appl. Phys. Lett.
63
,
660
(
1993
).
87.
F. J.
Morin
and
J. P.
Maita
,
Phys. Rev.
96
,
988
(
1954
).
88.
C. N.
Ahmad
,
A. R.
Adams
, and
G. D.
Pitts
,
J. Phys. C
12
,
L379
(
1979
).
89.
L.
Nordheim
,
Ann. Phys.
9
,
607
(
1931
).
90.
N. F.
Mott
,
Proc. Cambridge Philos. Soc.
32
,
281
(
1936
).
91.
M.
Glicksman
,
Phys. Rev.
111
,
125
(
1958
).
92.
J.
Singh
and
K. K.
Bajaj
,
J. Appl. Phys.
57
,
322
(
1985
).
93.
J. W.
Harrison
and
J. R.
Hauser
,
Phys. Rev. B
13
,
5347
(
1976
).
94.
J. H.
Marsh
,
Appl. Phys. Lett.
41
,
732
(
1982
).
95.
K.
Bhaumik
,
B. K.
Ridley
, and
Y.
Shacham-Diamand
,
J. Appl. Phys.
74
,
5546
(
1993
).
96.
J. S.
Lannin
,
Phys. Rev. B
16
,
1510
(
1977
).
97.
G.
Busch
and
O.
Vogt
,
Helv. Phys. Acta
33
,
437
(
1960
).
98.
Y. C.
Chen
,
S. H.
Li
,
P. K.
Bhattacharya
,
J.
Singh
, and
J. M.
Hinckley
,
Appl. Phys. Lett.
64
,
3110
(
1994
).
99.
S. H.
Li
,
J. M.
Hinckley
,
J.
Singh
, and
P. K.
Bhattacharya
,
Appl. Phys. Lett.
63
,
1393
(
1993
).
100.
D. C. Look, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1983), Vol. 19, p. 127.
101.
G. W.
Ludwig
and
R. L.
Watters
,
Phys. Rev.
101
,
1699
(
1956
).
102.
K.
Yeom
,
J. M.
Hinckley
, and
J.
Singh
,
Appl. Phys. Lett.
64
,
2985
(
1994
).
103.
V.
Venkataraman
,
C. W.
Liu
, and
J. C.
Sturm
,
Appl. Phys. Lett.
63
,
2795
(
1993
).
104.
J. P. Krusius and M. V. Fischetti, IBM Research Report No. RC 15089, 10/27/89.
This content is only available via PDF.
You do not currently have access to this content.