Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Bronchiectasis

Abstract

Bronchiectasis refers to abnormal dilatation of the bronchi. Airway dilatation can lead to failure of mucus clearance and increased risk of infection. Pathophysiological mechanisms of bronchiectasis include persistent bacterial infections, dysregulated immune responses, impaired mucociliary clearance and airway obstruction. These mechanisms can interact and self-perpetuate, leading over time to impaired lung function. Patients commonly present with productive cough and recurrent chest infections, and the diagnosis of bronchiectasis is based on clinical symptoms and radiological findings. Bronchiectasis can be the result of several different underlying disorders, and identifying the aetiology is crucial to guide management. Treatment is directed at reducing the frequency of exacerbations, improving quality of life and preventing disease progression. Although no therapy is licensed for bronchiectasis by regulatory agencies, evidence supports the effectiveness of airway clearance techniques, antibiotics and mucolytic agents, such as inhaled isotonic or hypertonic saline, in some patients. Bronchiectasis is a disabling disease with an increasing prevalence and can affect individuals of any age. A major challenge is the application of emerging phenotyping and endotyping techniques to identify the patient populations who would most benefit from a specific treatment, with the goal of better targeting existing and emerging treatments and achieving better outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology of healthy and dilatated bronchi.
Fig. 2: Aetiologies of bronchiectasis grouped by regions and populations.
Fig. 3: Microbial infection and dysfunctional immunity contribute to the pathophysiology of bronchiectasis.
Fig. 4: Airway obstruction, impaired mucociliary clearance and other mechanisms promoting bronchiectasis.
Fig. 5: Radiological features of bronchiectasis.
Fig. 6: Resolution of bronchiectasis in a child.

Similar content being viewed by others

References

  1. Chalmers, J. D., Aliberti, S. & Blasi, F. Management of bronchiectasis in adults. Eur. Respir. J. 45, 1446–1462 (2015).

    PubMed  Google Scholar 

  2. Cole, P. J. Inflammation: a two-edged sword — the model of bronchiectasis. Eur. J. Respir. Dis. Suppl. 147, 6–15 (1986).

    CAS  PubMed  Google Scholar 

  3. Chalmers, J. D. et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 189, 576–585 (2014). This study described the risk factors for mortality and hospital admissions in multiple European bronchiectasis cohorts and derived a clinical prediction tool that can predict poor outcome across multiple domains, which has now been validated worldwide.

    PubMed  Google Scholar 

  4. Tomos, I., Karakatsani, A., Manali, E. D. & Papiris, S. A. Celebrating two centuries since the invention of the stethoscope. Rene Theophile Hyacinthe Laënnec (1781–1826). Ann. Am. Thorac Soc. 13, 1667–1670 (2016).

    PubMed  Google Scholar 

  5. Goeminne, P. C. & De Soyza, A. Bronchiectasis: how to be an orphan with many parents? Eur. Respir. J. 47, 10–13 (2016).

    PubMed  Google Scholar 

  6. Quint, J. K. et al. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study. Eur. Respir. J. 47, 186–193 (2016). An epidemiological study using routinely collected data, demonstrating dramatic increases in bronchiectasis prevalence over 10 years.

    PubMed  Google Scholar 

  7. Ringshausen, F. C. et al. Bronchiectasis in Germany: a population-based estimation of disease prevalence. Eur. Respir. J. 46, 1805–1807 (2015).

    CAS  PubMed  Google Scholar 

  8. Aliberti, S. et al. Research priorities in bronchiectasis: a consensus statement from the EMBARC Clinical Research Collaboration. Eur. Respir. J. 48, 632–647 (2016).

    PubMed  Google Scholar 

  9. McDonnell, M. J. et al. Multidimensional severity assessment in bronchiectasis: an analysis of seven European cohorts. Thorax 71, 1110–1118 (2016).

    CAS  PubMed  Google Scholar 

  10. Chalmers, J. D. et al. The EMBARC European Bronchiectasis Registry: protocol for an international observational study. ERJ Open Res. https://doi.org/10.1183/23120541.00081-2015 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Aksamit, T. R. et al. Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry. Chest 151, 982–992 (2017). The first report from a national registry in the United States demonstrating patient characteristics very different from European and Australasian cohorts, including very high rates of NTM infection.

    PubMed  Google Scholar 

  12. Taylor-Cousar, J. L. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023 (2017).

    CAS  PubMed  Google Scholar 

  13. Hess, E. P. et al. Trends in computed tomography utilization rates: a longitudinal practice-based study. J. Patient Saf. 10, 52–58 (2014).

    PubMed  Google Scholar 

  14. Blackall, S. R. et al. Bronchiectasis in indigenous and non-indigenous residents of Australia and New Zealand. Respirology 23, 743–749 (2018).

    PubMed  Google Scholar 

  15. Lonni, S. et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann. Am. Thorac Soc. 12, 1764–1770 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Seitz, A. E., Olivier, K. N., Adjemian, J., Holland, S. M. & Prevots, D. R. Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007. Chest 142, 432–439 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Ringshausen, F. C. et al. Bronchiectasis-associated hospitalizations in Germany, 2005–2011: a population-based study of disease burden and trends. PLOS ONE 8, e71109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Munoz, G. et al. Time trends in hospital admissions for bronchiectasis: analysis of the Spanish National Hospital discharge data. PLOS ONE 11, e0162282 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Eastham, K. M., Fall, A. J., Mitchell, L. & Spencer, D. A. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax 59, 324–327 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Karakoc, G. B., Yilmaz, M., Altintas, D. U. & Kendirli, S. G. Bronchiectasis: still a problem. Pediatr. Pulmonol. 32, 175–178 (2001).

    CAS  PubMed  Google Scholar 

  21. Twiss, J., Metcalfe, R., Edwards, E. & Byrnes, C. New Zealand national incidence of bronchiectasis “too high” for a developed country. Arch. Dis. Child 90, 737–740 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, A. B., Grimwood, K., Mulholland, E. K. & Torzillo, P. J. Bronchiectasis in Indigenous children in remote Australian communities. Med. J. Aust. 177, 200–204 (2002).

    PubMed  Google Scholar 

  23. Singleton, R. et al. Bronchiectasis in Alaska native children: causes and clinical courses. Pediatr. Pulmonol. 29, 182–187 (2000).

    CAS  PubMed  Google Scholar 

  24. Chandrasekaran, R., Mac Aogain, M., Chalmers, J. D., Elborn, S. J. & Chotirmall, S. H. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm. Med. 18, 83 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Weycker, D., Hansen, G. L. & Seifer, F. D. Prevalence and incidence of noncystic fibrosis bronchiectasis among US adults in 2013. Chron. Respir. Dis. 14, 377–384 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Lin, J.-L., Xu, J.-F. & Qu, J.-M. Bronchiectasis in China. Ann. Am. Thorac Soc. 13, 609–616 (2016).

    PubMed  Google Scholar 

  27. McDonnell, M. J. et al. Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study. Lancet Respir. Med. 4, 969–979 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Diel, R. et al. Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur. Respir. J. 49, 1602109 (2017).

    PubMed  Google Scholar 

  29. Koh, W.-J. et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur. Respir. J. 50, 1602503 (2017).

    PubMed  Google Scholar 

  30. Vidaillac, C., Yong, V. F. L., Jaggi, T. K., Soh, M.-M. & Chotirmall, S. H. Gender differences in bronchiectasis: a real issue? Breathe (Sheff.) 14, 108–121 (2018).

    PubMed Central  Google Scholar 

  31. Vogelmeier, C. F. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am. J. Respir. Crit. Care Med. 195, 557–582 (2017).

    CAS  PubMed  Google Scholar 

  32. Tan, W. C. et al. Findings on thoracic computed tomography scans and respiratory outcomes in persons with and without chronic obstructive pulmonary disease: a population-based cohort study. PLOS ONE 11, e0166745 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. De Soyza, A. et al. Bronchiectasis rheumatoid overlap syndrome is an independent risk factor for mortality in patients with bronchiectasis: a multicenter cohort study. Chest 151, 1247–1254 (2017).

    PubMed  Google Scholar 

  34. Chalmers, J. D. et al. Characterization of the “frequent exacerbator phenotype” in bronchiectasis. Am. J. Respir. Crit. Care Med. 197, 1410–1420 (2018). A large (>2,000 patients), multicentre study describing the clinical effect of exacerbations over time, demonstrating that patients with frequent exacerbations have worse clinical outcomes even after adjustment for potential confounders.

    PubMed  Google Scholar 

  35. Araujo, D. et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur. Respir. J. 51, 1701953 (2018).

    PubMed  Google Scholar 

  36. Polverino, E. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 50, 1700629 (2017). The first international guidelines following on from national guidance issued by thoracic societies in Spain, the United Kingdom, Australia and New Zealand.

    PubMed  Google Scholar 

  37. Mao, B., Yang, J.-W., Lu, H.-W. & Xu, J.-F. Asthma and bronchiectasis exacerbation. Eur. Respir. J. 47, 1680–1686 (2016).

    CAS  PubMed  Google Scholar 

  38. Shah, P. L. et al. Determinants of chronic infection with Staphylococcus aureus in patients with bronchiectasis. Eur. Respir. J. 14, 1340–1344 (1999).

    CAS  PubMed  Google Scholar 

  39. Whitehouse, J. L., Exley, A. R., Foweraker, J. & Bilton, D. Chronic Burkholderia multivorans bronchial infection in a non-cystic fibrosis individual with mannose binding lectin deficiency. Thorax 60, 168–170 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shoemark, A. et al. High prevalence of CCDC103 p. His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax 73, 157–166 (2018).

    PubMed  Google Scholar 

  41. Chalmers, J. D. et al. The European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC): experiences from a successful ERS Clinical Research Collaboration. Breathe (Sheff.) 13, 180–192 (2017).

    Google Scholar 

  42. Donnelly, D., Critchlow, A. & Everard, M. L. Outcomes in children treated for persistent bacterial bronchitis. Thorax 62, 80–84 (2007).

    PubMed  Google Scholar 

  43. Chalmers, J. D. & Chotirmall, S. H. Bronchiectasis: new therapies and new perspectives. Lancet Respir. Med. 6, 715–726 (2018).

    CAS  PubMed  Google Scholar 

  44. Chalmers, J. D. et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 186, 657–665 (2012). A study demonstrating that bacterial clearance through antibiotic therapy results in reduced airway inflammation and in improvements in systemic inflammation, thereby providing strong support for the self-perpetuating cycle hypothesis and the development of inhaled antibiotics as a treatment.

    CAS  PubMed  Google Scholar 

  45. Finch, S., McDonnell, M. J., Abo-Leyah, H., Aliberti, S. & Chalmers, J. D. A. Comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann. Am. Thorac Soc. 12, 1602–1611 (2015).

    PubMed  Google Scholar 

  46. Wurzel, D. F. et al. Protracted bacterial bronchitis in children: natural history and risk factors for bronchiectasis. Chest 150, 1101–1108 (2016). A detailed description of a cohort of patients with persistent bacterial bronchitis that also identified risk factors for progression to bronchiectasis.

    PubMed  Google Scholar 

  47. Kantar, A. et al. ERS statement on protracted bacterial bronchitis in children. Eur. Respir. J. 50, 1602139 (2017). A consensus statement from the ERS on the definition, diagnosis, microbiology, treatment and research priorities in persistent bacterial bronchitis.

    PubMed  Google Scholar 

  48. Faner, R. et al. The microbiome in respiratory medicine: current challenges and future perspectives. Eur. Respir. J. 49, 1602086 (2017).

    PubMed  Google Scholar 

  49. Taylor, S. L. et al. FUT2 genotype influences lung function, exacerbation frequency and airway microbiota in non-CF bronchiectasis. Thorax 72, 304–310 (2017).

    PubMed  Google Scholar 

  50. Metersky, M. L. et al. The prevalence and significance of Staphylococcus aureus in patients with non-cystic fibrosis bronchiectasis. Ann. Am. Thorac Soc. 15, 365–370 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Hilliam, Y. et al. Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. Eur. Respir. J. 49, 1602108 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Woo, T. E. et al. Virulence adaptations of Pseudomonas aeruginosa isolated from patients with non-cystic fibrosis bronchiectasis. Microbiology 162, 2126–2135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. King, P. T. et al. Adaptive immunity to nontypeable Haemophilus influenzae. Am. J. Respir. Crit. Care Med. 167, 587–592 (2003).

    PubMed  Google Scholar 

  54. Walker, W. T. et al. Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation. Eur. Respir. J. 50, 1700612 (2017).

    PubMed  Google Scholar 

  55. Flume, P. A., Chalmers, J. D. & Olivier, K. N. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 392, 880–890 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Taylor, S. L. et al. Matrix metalloproteinases vary with airway microbiota composition and lung function in non-cystic fibrosis bronchiectasis. Ann. Am. Thorac Soc. 12, 701–707 (2015).

    PubMed  Google Scholar 

  57. Chintalacharuvu, K. R. et al. Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect. Immun. 71, 2563–2570 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wells, T. J. et al. Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J. Exp. Med. 211, 1893–1904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van Ingen, J. et al. Treatment outcome definitions in nontuberculous mycobacterial pulmonary disease: an NTM-NET consensus statement. Eur. Respir. J. 51, 1800170 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Kunst, H., Wickremasinghe, M., Wells, A. & Wilson, R. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur. Respir. J. 28, 352–357 (2006).

    CAS  PubMed  Google Scholar 

  61. Mac Aogain, M. et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study. Eur. Respir. J. 52, 1800766 (2018).

    Google Scholar 

  62. Gao, Y.-H. et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Chest 147, 1635–1643 (2015).

    PubMed  Google Scholar 

  63. Chalmers, J. D. & Hill, A. T. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol. Immunol. 55, 27–34 (2013).

    CAS  PubMed  Google Scholar 

  64. Saleh, A. D., Kwok, B., Brown, J. S. & Hurst, J. R. Correlates and assessment of excess cardiovascular risk in bronchiectasis. Eur. Respir. J. 50, 1701127 (2017).

    PubMed  Google Scholar 

  65. Frija-Masson, J. et al. Bacteria-driven peribronchial lymphoid neogenesis in bronchiectasis and cystic fibrosis. Eur. Respir. J. 49, 1601873 (2017).

    PubMed  Google Scholar 

  66. Ruchaud-Sparagano, M.-H. et al. Effect of granulocyte–macrophage colony-stimulating factor on neutrophil function in idiopathic bronchiectasis. Respirology 18, 1230–1235 (2013).

    PubMed  Google Scholar 

  67. van de Ven, A. A. J. M. et al. A CT scan score for the assessment of lung disease in children with common variable immunodeficiency disorders. Chest 138, 371–379 (2010).

    PubMed  Google Scholar 

  68. Frick, A. G. et al. Haemophilus influenzae stimulates ICAM-1 expression on respiratory epithelial cells. J. Immunol. 164, 4185–4196 (2000).

    CAS  PubMed  Google Scholar 

  69. Angrill, J. et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am. J. Respir. Crit. Care Med. 164, 1628–1632 (2001).

    CAS  PubMed  Google Scholar 

  70. Saleh, A. D. et al. The heterogeneity of systemic inflammation in bronchiectasis. Respir. Med. 127, 33–39 (2017).

    PubMed  Google Scholar 

  71. van Kessel, D. A., van Velzen-Blad, H., van den Bosch, J. M. M. & Rijkers, G. T. Impaired pneumococcal antibody response in bronchiectasis of unknown aetiology. Eur. Respir. J. 25, 482–489 (2005).

    PubMed  Google Scholar 

  72. Zimmer, J., Sleiman, M., Poli, A., Michel, T. & Hentges, F. TAP deficiency is also a cause of bronchiectasis. Thorax 68, 490–491 (2013).

    PubMed  Google Scholar 

  73. Holmes, A. H., Pelton, S., Steinbach, S. & Luzzi, G. A. HIV related bronchiectasis. Thorax 50, 1227 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsikrika, S. et al. The role of non-invasive modalities for assessing inflammation in patients with non-cystic fibrosis bronchiectasis. Cytokine 99, 281–286 (2017).

    CAS  PubMed  Google Scholar 

  75. Watt, A. P. et al. Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis. Thorax 59, 231–236 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chalmers, J. D. et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am. J. Respir. Crit. Care Med. 195, 1384–1393 (2017). A study demonstrating for the first time that a biomarker could predict clinical outcomes in bronchiectasis, supporting a key role of neutrophil elastase in disease progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schleimer, R. P., Benenati, S. V., Friedman, B. & Bochner, B. S. Do cytokines play a role in leukocyte recruitment and activation in the lungs? Am. Rev. Respir. Dis. 143, 1166–1169 (1991).

    Google Scholar 

  78. Mikami, M., Llewellyn-Jones, C. G., Bayley, D., Hill, S. L. & Stockley, R. A. The chemotactic activity of sputum from patients with bronchiectasis. Am. J. Respir. Crit. Care Med. 157, 723–728 (1998).

    CAS  PubMed  Google Scholar 

  79. Schaaf, B., Wieghorst, A., Aries, S. P., Dalhoff, K. & Braun, J. Neutrophil inflammation and activation in bronchiectasis: comparison with pneumonia and idiopathic pulmonary fibrosis. Respiration 67, 52–59 (2000).

    CAS  PubMed  Google Scholar 

  80. Fick, R. B. J. et al. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J. Clin. Invest. 74, 236–248 (1984).

    PubMed  PubMed Central  Google Scholar 

  81. Tosi, M. F., Zakem, H. & Berger, M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86, 300–308 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Berger, M., Sorensen, R. U., Tosi, M. F., Dearborn, D. G. & Doring, G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J. Clin. Invest. 84, 1302–1313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Voglis, S. et al. Human neutrophil peptides and phagocytic deficiency in bronchiectatic lungs. Am. J. Respir. Crit. Care Med. 180, 159–166 (2009). The most detailed study of neutrophil function and dysfunction in bronchiectasis to date, demonstrating that human neutrophil peptides (defensins) impair neutrophil phagocytosis and contribute to airway inflammation in bronchiectasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weldon, S. et al. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J. Immunol. 183, 8148–8156 (2009).

    CAS  PubMed  Google Scholar 

  85. Amitani, R. et al. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 4, 26–32 (1991).

    CAS  PubMed  Google Scholar 

  86. Fischer, B. M. & Voynow, J. A. Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am. J. Respir. Cell Mol. Biol. 26, 447–452 (2002).

    CAS  PubMed  Google Scholar 

  87. Bedi, P. et al. The BRICS (Bronchiectasis Radiologically Indexed CT Score): a multicenter study score for use in idiopathic and postinfective bronchiectasis. Chest 153, 1177–1186 (2018).

    PubMed  Google Scholar 

  88. Gaga, M. et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 53, 685–691 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng, L. et al. Macrophages, neutrophils and tumour necrosis factor-alpha expression in bronchiectatic airways in vivo. Respir. Med. 95, 792–798 (2001).

    CAS  PubMed  Google Scholar 

  90. Hodge, S. et al. Is alveolar macrophage phagocytic dysfunction in children with protracted bacterial bronchitis a forerunner to bronchiectasis? Chest 149, 508–515 (2016). A mechanistic study that increases our understanding of persistent bacterial bronchitis in children by demonstrating reductions in alveolar macrophage phagocytosis and efferocytosis (the clearance of apoptotic cells) in children with persistent bacterial bronchitis compared with healthy controls, suggesting a defect that may contribute to persistent neutrophilic inflammation.

    PubMed  Google Scholar 

  91. Vandivier, R. W. et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Invest. 109, 661–670 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Houtmeyers, E., Gosselink, R., Gayan-Ramirez, G. & Decramer, M. Regulation of mucociliary clearance in health and disease. Eur. Respir. J. 13, 1177–1188 (1999).

    CAS  PubMed  Google Scholar 

  93. Gilley, S. K. et al. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L162–L169 (2014).

    CAS  PubMed  Google Scholar 

  94. Smallman, L. A., Hill, S. L. & Stockley, R. A. Reduction of ciliary beat frequency in vitro by sputum from patients with bronchiectasis: a serine proteinase effect. Thorax 39, 663–667 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shoemark, A. et al. Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. Eur. Respir. J. 51, 1701809 (2018).

    PubMed  Google Scholar 

  96. Falconer, M., Collins, D. R., Feeney, J. & Torreggiani, W. C. Mounier–Kuhn syndrome in an older patient. Age Ageing 37, 115–116 (2008).

    PubMed  Google Scholar 

  97. Nishino, M. et al. Excessive collapsibility of bronchi in bronchiectasis: evaluation on volumetric expiratory high-resolution CT. J. Comput. Assist. Tomogr. 30, 474–478 (2006).

    PubMed  Google Scholar 

  98. Lucas, J. S. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 49, 1601090 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Goutaki, M. et al. The international primary ciliary dyskinesia cohort (iPCD cohort): methods and first results. Eur. Respir. J. 49, 1601181 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Driscoll, J. A., Bhalla, S., Liapis, H., Ibricevic, A. & Brody, S. L. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest 133, 1181–1188 (2008).

    PubMed  Google Scholar 

  101. Fajac, I., Viel, M., Gaitch, N., Hubert, D. & Bienvenu, T. Combination of ENaC and CFTR mutations may predispose to cystic fibrosis-like disease. Eur. Respir. J. 34, 772–773 (2009).

    CAS  PubMed  Google Scholar 

  102. Casals, T. et al. Bronchiectasis in adult patients: an expression of heterozygosity for CFTR gene mutations? Clin. Genet. 65, 490–495 (2004).

    CAS  PubMed  Google Scholar 

  103. Bienvenu, T. et al. Cystic fibrosis transmembrane conductance regulator channel dysfunction in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 181, 1078–1084 (2010).

    CAS  PubMed  Google Scholar 

  104. Horvath, I. et al. Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Thorax 53, 867–870 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Loukides, S., Horvath, I., Wodehouse, T., Cole, P. J. & Barnes, P. J. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am. J. Respir. Crit. Care Med. 158, 991–994 (1998).

    CAS  PubMed  Google Scholar 

  106. Willis, D., Moore, A. R., Frederick, R. & Willoughby, D. A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat. Med. 2, 87–90 (1996).

    CAS  PubMed  Google Scholar 

  107. Chalmers, J. D., McHugh, B. J., Docherty, C., Govan, J. R. W. & Hill, A. T. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 68, 39–47 (2013).

    PubMed  Google Scholar 

  108. Chang, A. B. et al. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand Thoracic Society of Australia and New Zealand guidelines. Med. J. Aust. 202, 21–23 (2015).

    PubMed  Google Scholar 

  109. Dimakou, K. et al. Non CF-bronchiectasis: aetiologic approach, clinical, radiological, microbiological and functional profile in 277 patients. Respir. Med. 116, 1–7 (2016).

    PubMed  Google Scholar 

  110. McCallum, G. B. & Binks, M. J. The epidemiology of chronic suppurative lung disease and bronchiectasis in children and adolescents. Front. Pediatr. 5, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Kapur, N., Masters, I. B. & Chang, A. B. Exacerbations in noncystic fibrosis bronchiectasis: clinical features and investigations. Respir. Med. 103, 1681–1687 (2009).

    PubMed  Google Scholar 

  112. Chang, A. B., Redding, G. J. & Everard, M. L. Chronic wet cough: protracted bronchitis, chronic suppurative lung disease and bronchiectasis. Pediatr. Pulmonol. 43, 519–531 (2008).

    CAS  PubMed  Google Scholar 

  113. Goyal, V., Grimwood, K., Marchant, J., Masters, I. B. & Chang, A. B. Does failed chronic wet cough response to antibiotics predict bronchiectasis? Arch. Dis. Child 99, 522–525 (2014).

    PubMed  Google Scholar 

  114. Suarez-Cuartin, G., Chalmers, J. D. & Sibila, O. Diagnostic challenges of bronchiectasis. Respir. Med. 116, 70–77 (2016).

    PubMed  Google Scholar 

  115. van der Bruggen-Bogaarts, B. A., van der Bruggen, H. M., van Waes, P. F. & Lammers, J. W. Assessment of bronchiectasis: comparison of HRCT and spiral volumetric CT. J. Comput. Assist. Tomogr. 20, 15–19 (1996).

    PubMed  Google Scholar 

  116. Pasteur, M. C., Bilton, D. & Hill, A. T. British Thoracic Society guideline for non-CF bronchiectasis. Thorax 65, 577 (2010).

    CAS  PubMed  Google Scholar 

  117. Matsuoka, S. et al. Bronchoarterial ratio and bronchial wall thickness on high-resolution CT in asymptomatic subjects: correlation with age and smoking. AJR Am. J. Roentgenol. 180, 513–518 (2003).

    PubMed  Google Scholar 

  118. Berend, N., Woolcock, A. J. & Marlin, G. E. Relationship between bronchial and arterial diameters in normal human lungs. Thorax 34, 354–358 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Diaz, A. A. et al. Bronchoarterial ratio in never-smokers adults: implications for bronchial dilation definition. Respirology 22, 108–113 (2017).

    PubMed  Google Scholar 

  120. Kapur, N., Masel, J. P., Watson, D., Masters, I. B. & Chang, A. B. Bronchoarterial ratio on high-resolution CT scan of the chest in children without pulmonary pathology: need to redefine bronchial dilatation. Chest 139, 1445–1450 (2011).

    PubMed  Google Scholar 

  121. Chalmers, J. D. Bronchiectasis and COPD overlap: a case of mistaken identity? Chest 151, 1204–1206 (2017).

    PubMed  Google Scholar 

  122. Kim, S. J. et al. Normal bronchial and pulmonary arterial diameters measured by thin section CT. J. Comput. Assist. Tomogr. 19, 365–369 (1995).

    CAS  PubMed  Google Scholar 

  123. Brody, A. & Chang, A. The imaging definition of bronchiectasis in children: is it time for a change? Pediatr. Pulmonol. 53, 6–7 (2018).

    PubMed  Google Scholar 

  124. Hill, L. E., Ritchie, G., Wightman, A. J., Hill, A. T. & Murchison, J. T. Comparison between conventional interrupted high-resolution CT and volume multidetector CT acquisition in the assessment of bronchiectasis. Br. J. Radiol. 83, 67–70 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dodd, J. D., Souza, C. A. & Muller, N. L. Conventional high-resolution CT versus helical high-resolution MDCT in the detection of bronchiectasis. AJR Am. J. Roentgenol. 187, 414–420 (2006).

    PubMed  Google Scholar 

  126. Goyal, V., Grimwood, K., Marchant, J. M., Masters, I. B. & Chang, A. B. Paediatric chronic suppurative lung disease: clinical characteristics and outcomes. Eur. J. Pediatr. 175, 1077–1084 (2016).

    PubMed  Google Scholar 

  127. Colom, A. J., Maffey, A., Garcia Bournissen, F. & Teper, A. Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax 70, 169–174 (2015).

    PubMed  Google Scholar 

  128. Pizzutto, S. J. et al. Bronchoscopy contributes to the clinical management of Indigenous children newly diagnosed with bronchiectasis. Pediatr. Pulmonol. 48, 67–73 (2013).

    PubMed  Google Scholar 

  129. Chang, A. B., Boyce, N. C., Masters, I. B., Torzillo, P. J. & Masel, J. P. Bronchoscopic findings in children with non-cystic fibrosis chronic suppurative lung disease. Thorax 57, 935–938 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Douros, K. et al. Bronchoscopic and high-resolution CT scan findings in children with chronic wet cough. Chest 140, 317–323 (2011).

    PubMed  Google Scholar 

  131. Martinez-Garcia, M. A. et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur. Respir. J. 43, 1357–1367 (2014).

    PubMed  Google Scholar 

  132. Ellis, H. C., Cowman, S., Fernandes, M., Wilson, R. & Loebinger, M. R. Predicting mortality in bronchiectasis using bronchiectasis severity index and FACED scores: a 19-year cohort study. Eur. Respir. J. 47, 482–489 (2016).

    PubMed  Google Scholar 

  133. Mao, B., Yang, J.-W., Lu, H.-W. & Xu, J.-F. Asthma and risk of bronchiectasis exacerbation: we still need more evidence. Eur. Respir. J. 48, 1247–1248 (2016).

    PubMed  Google Scholar 

  134. Araujo, D. et al. Standardised classification of the aetiology of bronchiectasis using an objective algorithm. Eur. Respir. J. 50, 1701289 (2017).

    PubMed  Google Scholar 

  135. Gaillard, E. A., Carty, H., Heaf, D. & Smyth, R. L. Reversible bronchial dilatation in children: comparison of serial high-resolution computer tomography scans of the lungs. Eur. J. Radiol. 47, 215–220 (2003).

    CAS  PubMed  Google Scholar 

  136. McCallum, G. B. & Chang, A. B. “Good enough” is “not enough” when managing indigenous adults with bronchiectasis in Australia and New Zealand. Respirology 23, 725–726 (2018).

    PubMed  Google Scholar 

  137. Aliberti, S. et al. Quality standards for the management of bronchiectasis in Italy: a national audit. Eur. Respir. J. 48, 244–248 (2016).

    CAS  PubMed  Google Scholar 

  138. Kwak, H. J. et al. High prevalence of bronchiectasis in adults: analysis of CT findings in a health screening program. Tohoku J. Exp. Med. 222, 237–242 (2010).

    PubMed  Google Scholar 

  139. Flude, L. J., Agent, P. & Bilton, D. Chest physiotherapy techniques in bronchiectasis. Clin. Chest Med. 33, 351–361 (2012).

    PubMed  Google Scholar 

  140. Munoz, G., de Gracia, J., Buxo, M., Alvarez, A. & Vendrell, M. Long-term benefits of airway clearance in bronchiectasis: a randomised placebo-controlled trial. Eur. Respir. J. 51, 1701926 (2018).

    PubMed  Google Scholar 

  141. Wong, C., Sullivan, C. & Jayaram, L. ELTGOL airway clearance in bronchiectasis: laying the bricks of evidence. Eur. Respir. J. 51, 1702232 (2018).

    PubMed  Google Scholar 

  142. Lee, A. L., Burge, A. T. & Holland, A. E. Airway clearance techniques for bronchiectasis. Cochrane Database Syst. Rev. 11, CD008351 (2015).

    Google Scholar 

  143. Nicolson, C. H. H. et al. The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir. Med. 106, 661–667 (2012).

    PubMed  Google Scholar 

  144. Lee, A. L., Hill, C. J., McDonald, C. F. & Holland, A. E. Pulmonary rehabilitation in individuals with non-cystic fibrosis bronchiectasis: a systematic review. Arch. Phys. Med. Rehabil. 98, 774–782 (2017).

    PubMed  Google Scholar 

  145. Kuehni, C. E., Goutaki, M. & Kobbernagel, H. E. Hypertonic saline in patients with primary ciliary dyskinesia: on the road to evidence-based treatment for a rare lung disease. Eur. Respir. J. 49, 1602514 (2017).

    PubMed  Google Scholar 

  146. Bilton, D. et al. Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax 69, 1073–1079 (2014).

    PubMed  Google Scholar 

  147. Guan, W.-J., Huang, Y., Chen, C.-L., Chen, R.-C. & Zhong, N.-S. Macrolides, mucoactive drugs and adherence for the management of bronchiectasis. Eur. Respir. J. 51, 1701987 (2018).

    PubMed  Google Scholar 

  148. Chalmers, J. D. & Polverino, E. Macrolides, mucoactive drugs and adherence for the management of bronchiectasis. Eur. Respir. J. 51, 1702033 (2018).

    PubMed  Google Scholar 

  149. O’Donnell, A. E., Barker, A. F., Ilowite, J. S. & Fick, R. B. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 113, 1329–1334 (1998). One of the first large-scale trials in bronchiectasis in the modern era, showing that a drug known to be beneficial in cystic fibrosis bronchiectasis was ineffective or potentially harmful in non-cystic fibrosis bronchiectasis; the knowledge that cystic fibrosis and bronchiectasis behave differently has made a major impact on the field.

    PubMed  Google Scholar 

  150. Wills, P. J. et al. Short-term recombinant human DNase in bronchiectasis. Effect on clinical state and in vitro sputum transportability. Am. J. Respir. Crit. Care Med. 154, 413–417 (1996).

    CAS  PubMed  Google Scholar 

  151. Mustafa, M.-H. et al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur. Respir. J. 49, 1601847 (2017).

    PubMed  Google Scholar 

  152. Kelly, C. et al. Macrolide antibiotics for bronchiectasis. Cochrane Database Syst. Rev. 3, CD012406 (2018).

    PubMed  Google Scholar 

  153. Serisier, D. J. et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 309, 1260–1267 (2013).

    CAS  PubMed  Google Scholar 

  154. Wong, C. et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 380, 660–667 (2012). The first-published of three important macrolide studies conducted in adults, demonstrating consistent reductions in exacerbation frequency with long-term low-dose macrolide versus placebo.

    CAS  PubMed  Google Scholar 

  155. Altenburg, J. et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309, 1251–1259 (2013).

    CAS  PubMed  Google Scholar 

  156. Valery, P. C. et al. Long-term azithromycin for Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir. Med. 1, 610–620 (2013). A multicentre randomized controlled trial demonstrating reduced exacerbations in Indigenous children treated with azithromycin compared with placebo.

    CAS  PubMed  Google Scholar 

  157. van Ingen, J. et al. Poor adherence to management guidelines in nontuberculous mycobacterial pulmonary diseases. Eur. Respir. J. 49, 1601855 (2017).

    PubMed  Google Scholar 

  158. Haworth, C. S., Foweraker, J. E., Wilkinson, P., Kenyon, R. F. & Bilton, D. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 189, 975–982 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Barker, A. F. et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir. Med. 2, 738–749 (2014). At the time, the largest inhaled antibiotic trial in bronchiectasis; this study found that aztreonam, which is licensed for use in cystic fibrosis, did not improve QOL in bronchiectasis and was associated with increased adverse events.

    CAS  PubMed  Google Scholar 

  160. De Soyza, A. et al. RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 51, 1702052 (2018). One of two studies describing the largest inhaled antibiotic development programme in bronchiectasis; this study found no consistent improvements in exacerbation frequency or QOL with inhaled antibiotics, questioning their role as a therapy for patients with bronchiectasis.

    PubMed  Google Scholar 

  161. Aksamit, T. et al. RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 51, 1702053 (2018).

    PubMed  Google Scholar 

  162. Chotirmall, S. H. & Chalmers, J. D. RESPIRE: breathing new life into bronchiectasis. Eur. Respir. J. 51, 1702444 (2018).

    PubMed  Google Scholar 

  163. Barker, A. F. et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am. J. Respir. Crit. Care Med. 162, 481–485 (2000).

    CAS  PubMed  Google Scholar 

  164. Drobnic, M. E., Suñé, P., Montoro, J. B., Ferrer, A. & Orriols, R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann. Pharmacother. 39, 39–44 (2005).

    CAS  PubMed  Google Scholar 

  165. Vendrell, M., Muñoz, G. & de Gracia, J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir. Med. J. 9, 30–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Brodt, A. M., Stovold, E. & Zhang, L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur. Respir. J. 44, 382–393 (2014).

    PubMed  Google Scholar 

  167. Murray, M. P. et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 183, 491–499 (2011).

    CAS  PubMed  Google Scholar 

  168. Haworth, C. et al. Inhaled liposomal ciprofloxacin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection: results from two parallel phase III trials (ORBIT-3 and -4) [abstract]. Am. J. Respir. Crit. Care Med. 195, A7604 (2018).

    Google Scholar 

  169. Contoli, M. et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur. Respir. J. 50, 1700451 (2017).

    PubMed  Google Scholar 

  170. Kapur, N., Petsky, H. L., Bell, S., Kolbe, J. & Chang, A. B. Inhaled corticosteroids for bronchiectasis. Cochrane Database Syst. Rev. 5, CD000996 (2018).

    PubMed  Google Scholar 

  171. De Soyza, A. et al. A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur. Respir. J. 46, 1021–1032 (2015).

    PubMed  Google Scholar 

  172. Stockley, R. et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir. Med. 107, 524–533 (2013).

    PubMed  Google Scholar 

  173. Bedi, P. et al. A randomized controlled trial of atorvastatin in patients with bronchiectasis infected with Pseudomonas aeruginosa: a proof of concept study. Chest 152, 368–378 (2017).

    PubMed  Google Scholar 

  174. Mandal, P. et al. Atorvastatin as a stable treatment in bronchiectasis: a randomised controlled trial. Lancet Respir. Med. 2, 455–463 (2014).

    CAS  PubMed  Google Scholar 

  175. Konstan, M. W. et al. A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J. Cyst. Fibros 13, 148–155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Fan, L.-C., Liang, S., Lu, H.-W., Fei, K. & Xu, J.-F. Efficiency and safety of surgical intervention to patients with non-cystic fibrosis bronchiectasis: a meta-analysis. Sci. Rep. 5, 17382 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Birch, J. et al. Outcomes of lung transplantation in adults with bronchiectasis. BMC Pulm. Med. 18, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Hill, A. T. et al. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur. Respir. J. 49, 1700051 (2017). A global consensus document on the definition of exacerbation for use in clinical research; this paper is notable for the involvement of investigators from Europe, North America, Australasia and Africa in a global task force.

    PubMed  Google Scholar 

  179. O’Leary, C. J. et al. Relationship between psychological well-being and lung health status in patients with bronchiectasis. Respir. Med. 96, 686–692 (2002).

    PubMed  Google Scholar 

  180. Ryu, Y. J., Chun, E.-M., Lee, J. H. & Chang, J. H. Prevalence of depression and anxiety in outpatients with chronic airway lung disease. Korean J. Intern. Med. 25, 51–57 (2010).

    PubMed  PubMed Central  Google Scholar 

  181. Joish, V. N., Spilsbury-Cantalupo, M., Operschall, E., Luong, B. & Boklage, S. Economic burden of non-cystic fibrosis bronchiectasis in the first year after diagnosis from a US health plan perspective. Appl. Health Econ. Health Policy 11, 299–304 (2013).

    PubMed  Google Scholar 

  182. Kapur, N., Masters, I. B., Newcombe, P. & Chang, A. B. The burden of disease in pediatric non-cystic fibrosis bronchiectasis. Chest 141, 1018–1024 (2012).

    PubMed  Google Scholar 

  183. Murray, M. P., Turnbull, K., MacQuarrie, S., Pentland, J. L. & Hill, A. T. Validation of the Leicester cough questionnaire in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 34, 125–131 (2009).

    CAS  PubMed  Google Scholar 

  184. Guan, W.-J. et al. Inflammatory responses, spirometry, and quality of life in subjects with bronchiectasis exacerbations. Respir. Care 60, 1180–1189 (2015).

    PubMed  Google Scholar 

  185. Courtney, J. M. et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron. Respir. Dis. 5, 161–168 (2008).

    CAS  PubMed  Google Scholar 

  186. Coulter, T. I. et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J. Allergy Clin. Immunol. 139, 597–606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Goeminne, C. P. et al. The impact of acute air pollution fluctuations on bronchiectasis pulmonary exacerbation. A case-crossover analysis. Eur. Respir. J. 52, 1702557 (2018).

    PubMed  Google Scholar 

  188. Chalmers, J. D. et al. Cross-infection risk in patients with bronchiectasis: a position statement from the European Bronchiectasis Network (EMBARC), EMBARC/ELF patient advisory group and European Reference Network (ERN-Lung) Bronchiectasis Network. Eur. Respir. J. 51, 1701937 (2018).

    PubMed  Google Scholar 

  189. Blasi, F., Chalmers, J. D. & Aliberti, S. COPD and bronchiectasis: phenotype, endotype or co-morbidity? COPD 11, 603–604 (2014).

    PubMed  Google Scholar 

  190. Aliberti, S. et al. Clinical phenotypes in adult patients with bronchiectasis. Eur. Respir. J. 47, 1113–1122 (2016).

    PubMed  Google Scholar 

  191. Pasteur, M. C. et al. An investigation into causative factors in patients with bronchiectasis. Am. J. Respir. Crit. Care Med. 162, 1277–1284 (2000).

    CAS  PubMed  Google Scholar 

  192. Agustí, A. et al. Precision medicine in airway diseases: moving to clinical practice. Eur. Respir. J. 50, 1701655 (2017).

    PubMed  Google Scholar 

  193. Agusti, A. et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur. Respir. J. 47, 410–419 (2016).

    PubMed  Google Scholar 

  194. Vedel-Krogh, S., Nordestgaard, B. G., Lange, P., Vestbo, J. & Nielsen, S. F. Blood eosinophil count and risk of pneumonia hospitalisations in individuals with COPD. Eur. Respir. J. 51, 1800120 (2018).

    PubMed  Google Scholar 

  195. Kerkhof, M. et al. Blood eosinophil count and exacerbation risk in patients with COPD. Eur. Respir. J. 50, 1700761 (2017).

    PubMed  Google Scholar 

  196. Southworth, T., Beech, G., Foden, P., Kolsum, U. & Singh, D. The reproducibility of COPD blood eosinophil counts. Eur. Respir. J. 52, 1800427 (2018).

    PubMed  Google Scholar 

  197. Palmer, R. et al. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin. Pharmacol. Ther. https://doi.org/10.1002/cpt.1053 (2018).

    Google Scholar 

  198. Harding, R. & Maritz, G. Maternal and fetal origins of lung disease in adulthood. Semin. Fetal Neonatal Med. 17, 67–72 (2012).

    PubMed  Google Scholar 

  199. Maritz, G. S. & Harding, R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. Int. J. Environ. Res. Public Health 8, 875–898 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Caskey, S. et al. Structural and functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann. Am. Thorac Soc. 13, 1262–1270 (2016).

    PubMed  Google Scholar 

  201. Valery, P. C. et al. Hospital-based case–control study of bronchiectasis in Indigenous children in central Australia. Pediatr. Infect. Dis. J. 23, 902–908 (2004).

    PubMed  Google Scholar 

  202. Jayes, L. et al. SmokeHaz: systematic reviews and meta-analyses of the effects of smoking on respiratory health. Chest 150, 164–179 (2016).

    PubMed  Google Scholar 

  203. Walker, C. L. F. et al. Global burden of childhood pneumonia and diarrhoea. Lancet 381, 1405–1416 (2013).

    PubMed  PubMed Central  Google Scholar 

  204. Chang, A. B. et al. Protracted bacterial bronchitis: the last decade and the road ahead. Pediatr. Pulmonol. 51, 225–242 (2016).

    PubMed  Google Scholar 

  205. Sjogren, P., Nilsson, E., Forsell, M., Johansson, O. & Hoogstraate, J. A systematic review of the preventive effect of oral hygiene on pneumonia and respiratory tract infection in elderly people in hospitals and nursing homes: effect estimates and methodological quality of randomized controlled trials. J. Am. Geriatr. Soc. 56, 2124–2130 (2008).

    PubMed  Google Scholar 

  206. Singleton, R. J. et al. Indigenous children from three countries with non-cystic fibrosis chronic suppurative lung disease/bronchiectasis. Pediatr. Pulmonol. 49, 189–200 (2014).

    PubMed  Google Scholar 

  207. Tan, H.-L. et al. The Th17 pathway in cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 184, 252–258 (2011).

    CAS  PubMed  Google Scholar 

  208. Picard, C. et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J. Clin. Immunol. 35, 696–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Zemanick, E. T. et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur. Respir. J. 50, 1700832 (2017).

    PubMed  PubMed Central  Google Scholar 

  210. Paff, T. et al. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur. Respir. J. 49, 1601770 (2017).

    PubMed  Google Scholar 

  211. Gupta, S. et al. Qualitative analysis of high-resolution CT scans in severe asthma. Chest 136, 1521–1528 (2009).

    PubMed  PubMed Central  Google Scholar 

  212. Agarwal, R. et al. A randomised trial of glucocorticoids in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. Eur. Respir. J. 47, 490–498 (2016).

    CAS  PubMed  Google Scholar 

  213. McShane, P. J., Naureckas, E. T. & Strek, M. E. Bronchiectasis in a diverse US population: effects of ethnicity on etiology and sputum culture. Chest 142, 159–167 (2012). A detailed description of a US-based cohort that reveals differences in aetiology and microbiology based on ethnicity, a finding that has become increasingly important as more global data on bronchiectasis become available.

    PubMed  Google Scholar 

Download references

Acknowledgements

J.D.C. is supported by the GSK/British Lung Foundation Chair of Respiratory Research. A.B.C. is supported by an Australian National Health and Medical Research Council Practitioner Fellowship (grant 105821). S.H.C. is supported by the Singapore Ministry of Health’s National Medical Research Council under its Transition Award (NMRC/TA/0048/2016), the Lee Kong Chian School of Medicine, Nanyang Technological University Start-Up Grant and would like to acknowledge the Academic Respiratory Initiative for Pulmonary Health (TARIPH).

Reviewer information

Nature Reviews Disease Primers thank L.-A. Daniel, K. Olivier, E. Polverino, H. Tiddens and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.D.C.); Epidemiology (P.J.M.); Mechanisms/pathophysiology (S.H.C.); Diagnosis, screening and prevention (A.B.C.); Management (R.D.); Quality of life (P.J.M.); Outlook (J.D.C.); Overview of Primer (J.D.C.).

Corresponding author

Correspondence to James D. Chalmers.

Ethics declarations

Competing interests

J.D.C. has been an investigator, advisory board member or trial steering committee member for several bronchiectasis clinical trials, including for Aradigm, Bayer, Grifols, Novartis and Zambon. He is chair of the European Bronchiectasis Registry. A.B.C. is a member of the data safety monitoring board for an unlicensed vaccine study (for GlaxoSmithKline) and an adviser for study design of an unlicensed product for cough (for Merck). She declares no financial conflicts of interest regarding the content of this manuscript. P.J.M. has served on the advisory committee to the FDA for Bayer and is an advisory board member for Aradigm, Bayer, Grifols, Hill Rom and Insmed. She declares no financial conflicts of interest regarding the content of this manuscript. S.H.C. and R.D. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC): www.bronchiectasis.eu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalmers, J.D., Chang, A.B., Chotirmall, S.H. et al. Bronchiectasis. Nat Rev Dis Primers 4, 45 (2018). https://doi.org/10.1038/s41572-018-0042-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0042-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing