Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic evaluation and counseling for epilepsy

Abstract

The contribution of genetics to both rare and common epilepsies is rapidly being elucidated, and neurologists are routinely considering genetic testing in the work-up of several epilepsy syndromes of both known and unknown cause. Simultaneously, advances in molecular technology foreshadow additional discoveries in epilepsy etiology, implying a greater role than ever before for genetics in the epilepsy clinic. Genetic testing can be valuable not only for diagnosis but also for guiding treatment and for informing reproductive choices. In this Review, we outline the principles of genetic evaluation and counseling, and describe how to interpret genetic test results for epilepsy in the following five common clinical scenarios: Dravet syndrome, infantile spasms, epilepsy with cortical malformation, epilepsy with mental retardation, and idiopathic epilepsy syndromes. We differentiate clinical situations in which genetic testing is of high and low utility, and predict future areas for the application of genetics in epilepsy practice.

Key Points

  • In certain defined epilepsy syndromes, genetic tests that include chromosome microarray analysis and sequencing-based tests have clinical utility and can help to guide clinical management and accurately predict recurrence risk

  • The genetic tests currently offered for common epilepsies are of limited validity or utility, as well as being potentially wasteful of time and resources, and confusing to clinicians

  • Development of clinically useful diagnostic tests for common epilepsies is challenging, as such applications will have to account for genetic heterogeneity and to correlate with meaningful aspects of the epilepsy phenotype

  • The principles of genetic evaluation still rest on clinical foundations, with the emphasis placed on the identification of patients with specific epilepsy syndromes through clinical investigation

  • In the future, genetic variants that predict prognosis, comorbidities and drug response might fulfill the vaunted promise of personalized medicine

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reid, C. A., Berkovic, S. F. & Petrou, S. Mechanisms of human inherited epilepsies. Prog. Neurobiol. 87, 41–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Pal, D. K., Strug, L. J. & Greenberg, D. A. Evaluating candidate genes in common epilepsies and the nature of evidence. Epilepsia 49, 386–392 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Greenberg, D. A. & Pal, D. K. The state of the art in the genetic analysis of the epilepsies. Curr. Neurol. Neurosci. Rep. 7, 320–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deprez, L., Jansen, A. & De Jonghe, P. Genetics of epilepsy syndromes starting in the first year of life. Neurology 72, 273–281 (2009).

    Article  PubMed  Google Scholar 

  5. Kim, H. S. et al. Altered DNA copy number in patients with different seizure disorder type: by array–CGH. Brain Dev. 29, 639–643 (2007).

    Article  PubMed  Google Scholar 

  6. Dibbens, L. M. et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18, 3626–3631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. GeneTests at NCBI. GeneTests [online], (2010).

  8. The portal for rare diseases and orphan drugs. Orphanet [online], (2010).

  9. Scheffer, I. E., Zhang, Y. H., Jansen, F. E. & Dibbens, L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 31, 394–400 (2009).

    Article  PubMed  Google Scholar 

  10. Hattori, J. et al. A screening test for the prediction of Dravet syndrome before one year of age. Epilepsia 49, 626–633 (2008).

    Article  PubMed  Google Scholar 

  11. Marini, C. et al. SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular diagnosis. Epilepsia 50, 1670–1678 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Sijben, A. E. et al. Does a SCN1A gene mutation confer earlier age of onset of febrile seizures in GEFS+? Epilepsia 50, 953–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Singh, N. A. et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet. 5, e1000649 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Meisler, M. H., O'Brien, J. E. & Sharkey, L. M. The sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J. Physiol. 588, 1841–1848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Depienne, C. et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 5, e1000381 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kassai, B. et al. Severe myoclonic epilepsy in infancy: a systematic review and a meta-analysis of individual patient data. Epilepsia 49, 343–348 (2008).

    Article  PubMed  Google Scholar 

  17. Striano, P. et al. An open-label trial of levetiracetam in severe myoclonic epilepsy of infancy. Neurology 69, 250–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Caraballo, R. H. et al. Ketogenic diet in patients with Dravet syndrome. Epilepsia 46, 1539–1544 (2005).

    Article  PubMed  Google Scholar 

  19. Delgado-Escueta, A. V. & Bourgeois, B. F. Debate: does genetic information in humans help us treat patients? PRO—genetic information in humans helps us treat patients. CON—genetic information does not help at all. Epilepsia 49 (Suppl. 9), 13–24 (2008).

    Article  PubMed  Google Scholar 

  20. Guerrini, R., Belmonte, A. & Genton, P. Antiepileptic drug-induced worsening of seizures in children. Epilepsia 39, 2–9 (1998).

    Article  Google Scholar 

  21. Miller, I. O. & Sotero de Menzies, M. A. SCN1A-related seizure disorders. GENEReviews [online], (2007).

    Google Scholar 

  22. Scheffer, I. E. & Berkovic, S. F. Generalised epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120, 479–490 (1997).

    Article  PubMed  Google Scholar 

  23. Bonanni, P. et al. Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations. Epilepsia 45, 149–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Marini, C. et al. Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia 48, 1678–1685 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. 28, 46–48 (2001).

    CAS  PubMed  Google Scholar 

  26. Kang, J. Q., Shen, W. & Macdonald, R. L. The GABRG2 mutation, Q351X, associated with generalized epilepsy with febrile seizures plus, has both loss of function and dominant-negative suppression. J. Neurosci. 29, 2845–2856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallace, R. H. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+ channel β1 subunit gene SCN1B. Nat. Genet. 19, 366–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Frost, J. D. & Hrachovy, R. A. In Infantile Spasms: Diagnosis, Management and Prognosis (Kluwer Academic Publishers, Norwell, 2003).

    Book  Google Scholar 

  29. Marshall, C. R. et al. Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23–q21.11. Am. J. Hum. Genet. 83, 106–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stromme, P. et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat. Genet. 30, 441–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Weaving, L. S. et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am. J. Hum. Genet. 75, 1079–1093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mills, P. B. et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 12, 307–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher, R. C. et al. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann. Neurol. 65, 550–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Chiron, C., Dumas, C., Jambaqué, I., Mumford, J. & Dulac, O. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res. 26, 389–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Elterman, R. D., Shields, W. D., Mansfield, K. A. & Nakagawa, J. Randomized trial of vigabatrin in patients with infantile spasms. Neurology 57, 1416–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lacy, J. R. & Penry, J. K. In Infantile Spasms (Raven Press, New York, 1976).

    Google Scholar 

  37. Matsumoto, A. et al. Infantile spasms: etiological factors, clinical aspects, and long term prognosis in 200 cases. Eur. J. Pediatr. 135, 239–244 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Guerrini, R. & Marini, C. Genetic malformations of cortical development. Exp. Brain Res. 173, 322–333 (2006).

    Article  PubMed  Google Scholar 

  39. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Sheen, V. L. et al. Autosomal recessive form of periventricular heterotopia. Neurology 60, 1108–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fink, J. M., Dobyns, W. B., Guerrini, R. & Hirsch, B. A. Identification of a duplication of Xq28 associated with bilateral periventricular nodular heterotopia. Am. J. Hum. Genet. 61, 379–387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sicca, F., Silengo, M., Parrini, E., Ferrero, G. B. & Guerrini, R. Subcortical band heterotopia with simplified gyral pattern and syndactyly. Am. J. Med. Genet. A 119A, 207–210 (2003).

    Article  PubMed  Google Scholar 

  43. Gleeson, J. G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. des Portes, V. et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bingham, P. M., Lynch, D., McDonald-McGinn, D. & Zackai, E. Polymicrogyria in chromosome 22 delection syndrome. Neurology 51, 1500–1502 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Roll, P. et al. SRPX2 mutations in disorders of language cortex and cognition. Hum. Mol. Genet. 15, 1195–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Cunniff, C. Prenatal screening and diagnosis for pediatricians. Pediatrics 114, 889–894 (2004).

    Article  PubMed  Google Scholar 

  50. Singh, R., Gardner, R. J., Crossland, K. M., Scheffer, I. E. & Berkovic, S. F. Chromosomal abnormalities and epilepsy: a review for clinicians and gene hunters. Epilepsia 43, 127–140 (2002).

    Article  PubMed  Google Scholar 

  51. Inoue, Y. et al. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain 120, 939–953 (1997).

    Article  PubMed  Google Scholar 

  52. Battaglia, A. & Guerrini, R. Chromosomal disorders associated with epilepsy. Epileptic Disord. 7, 181–192 (2005).

    PubMed  Google Scholar 

  53. Schinzel, A. & Niedrist, D. Chromosome imbalances associated with epilepsy. Am. J. Med. Genet. 106, 119–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Macleod, S. et al. Electro-clinical phenotypes of chromosome disorders associated with epilepsy in the absence of dysmorphism. Brain Dev. 27, 118–124 (2005).

    Article  PubMed  Google Scholar 

  55. Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science 279, 403–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Singh, N. A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18, 25–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Steinlein, O. K. et al. A missense mutation in the neuronal nicotinic receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grill, M. F., Losey, T. E. & Ng, Y. T. The Hitchhiker's guide to the child neurologist's genetic evaluation of epilepsy. Semin. Pediatr. Neurol. 15, 32–40 (2008).

    Article  PubMed  Google Scholar 

  60. Ferraro, T. N., Dlugos, D. J. & Buono, R. J. Role of genetics in the diagnosis and treatment of epilepsy. Expert Rev. Neurother. 6, 1789–1800 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Helbig, I., Scheffer, I. E., Mulley, J. C. & Berkovic, S. F. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 7, 231–245 (2008).

    Article  PubMed  Google Scholar 

  62. Blandfort, M., Tsuboi, T. & Vogel, F. Genetic counseling in the epilepsies. I. Genetic risks. Hum. Genet. 76, 303–331 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Scheffer, I. E. et al. Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann. Neurol. 38, 633–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Kugler, S. L. et al. An autosomal dominant genetically heterogeneous variant of rolandic epilepsy and speech disorder. Epilepsia 49, 1086–1090 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guerrini, R. et al. Autosomal recessive rolandic epilepsy with paroxysmal exercise-induced dystonia and writer's cramp: delineation of the syndrome and gene mapping to chromosome 16p12–112. Ann. Neurol. 45, 344–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Clarke, T. et al. High risk of reading disability and speech sound disorder in rolandic epilepsy families: case–control study. Epilepsia 48, 2258–2265 (2007).

    PubMed  PubMed Central  Google Scholar 

  67. Clarke, T., Baskurt, Z., Strug, L. J. & Pal, D. K. Shared genetic risk factors for migraine and rolandic epilepsy: family case–control study. Epilepsia 50, 2428–2433 (2009).

    Article  PubMed  Google Scholar 

  68. Heijbel, J., Blom, S. & Rasmuson, M. Benign epilepsy of childhood with centrotemporal EEG foci: a genetic study. Epilepsia 16, 285–293 (1975).

    Article  CAS  PubMed  Google Scholar 

  69. Bali, B. et al. Autosomal dominant inheritance of centrotemporal sharp waves in rolandic epilepsy families. Epilepsia 48, 2266–2272 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Tsuboi, T. & Christian, W. On the genetics of primary generalized epilepsy with sporadic myoclonias of impulsive petit mal. A clinical and electroencephalographic study of 399 probands. Humangenetik 19, 155–182 (1973).

    CAS  PubMed  Google Scholar 

  71. Janz, D., Beck-Mannagetta, G. & Pantazis, G. In Genetics of the Epilepsies (eds Beck-Mannagetta, G., Anderson, V. E. & Janz, D.) 43–66 (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  72. Genton, P., Gelisse, P. & Thomas, P. In Juvenile Myoclonic Epilepsy—the Janz Syndrome Ch. 2 (eds Schmitz, B. & Sander, T.) 12–32 (Wright Biomedical Publishing, Petersfield, 2000).

    Google Scholar 

  73. Pal, D. K. et al. Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy. Brain Dev. 28, 92–98 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tsuboi, T. & Endo, S. Incidence of seizures and EEG abnormalities among offspring of epileptic patients. Hum. Genet. 36, 173–189 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Beck-Mannagetta, G., Janz, D., Hoffmeister, U., Behl, I. & Scholz, G. In Genetics of the Epilepsies Ch. 15 (eds Beck-Mannagetta, G., Anderson, V. E., Doose, H. & Janz, D.) 119–126 (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  76. Durner, M. et al. Genome scan of idiopathic generalised epilepsy: evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann. Neurol. 49, 328–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Greenberg, D. A. et al. Juvenile myoclonic epilepsy (JME) may be linked to the BF and HLA loci on human chromosome 6. Am. J. Med. Genet. 31, 185–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Greenberg, D. A. et al. Reproducibility and complications in gene searches: linkage on chromosome 6, heterogeneity, association and maternal inheritance in juvenile myoclonic epilepsy. Am. J. Hum. Genet. 66, 508–516 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weissbecker, K. A. et al. Confirmation of linkage between juvenile myoclonic epilepsy locus and the HLA region of chromosome 6. Am. J. Med. Genet. 38, 32–36 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Sander, T. et al. Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology 49, 842–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Pal, D. K. et al. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am. J. Hum. Genet. 73, 261–270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lorenz, S. et al. Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci. Lett. 400, 135–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Cavalleri, G. L. et al. A multicenter study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia 48, 706–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Helbig, I. et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 41, 160–162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31, 184–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki, T. et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat. Genet. 36, 842–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Bai, D. et al. DNA variants in coding region of EFHC1: SNPs do not associate with juvenile myoclonic epilepsy. Epilepsia 50, 1184–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suls, A. et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann. Neurol. 66, 415–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Vierck, E. et al. Polyspike and waves do not predict generalized tonic–clonic seizures in childhood absence epilepsy. J. Child Neurol. 25, 475–481 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bouma, P. A., Westendorp, R. G., van Dijk, J. G., Peters, A. C. & Brouwer, O. F. The outcome of absence epilepsy: a meta-analysis. Neurology 47, 802–808 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Levav, M. et al. Familial association of neuropsychological traits in patients with generalized and partial seizure disorders. J. Clin. Exp. Neuropsychol. 24, 311–326 (2002).

    Article  PubMed  Google Scholar 

  92. Battaglia, A. et al. The inv dup(15) syndrome: a clinically recognizable syndrome with altered behavior, mental retardation, and epilepsy. Neurology 48, 1081–1086 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Lippe, B. M. & Sparkes, R. S. Ring 14 chromosome: association with seizures. Am. J. Med. Genet. 9, 301–305 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by members of the Partnership for Pediatric Epilepsy Research (including the American Epilepsy Society, the Epilepsy Foundation, A. Fantaci and J. Fantaci, Fight Against Childhood Epilepsy and Seizures, Neurotherapy Ventures Charitable Research Fund, and Parents Against Childhood Epilepsy), the Epilepsy Foundation (through the generous support of the Charles L. Shor Foundation for Epilepsy Research), People Against Childhood Epilepsy, Ali Paris Fund and the NIH (grant NS047530 to D. K. Pal). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke, NIH, or any other sponsor. We thank the anonymous reviewers for their comments.

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb K. Pal.

Ethics declarations

Competing interests

D. K. Pal has patent applications with Columbia University Medical Center for BRD2 and ELP4 variants, while W. K. Chung acts as a consultant for Bio-Reference Laboratories. A. W. Pong declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, D., Pong, A. & Chung, W. Genetic evaluation and counseling for epilepsy. Nat Rev Neurol 6, 445–453 (2010). https://doi.org/10.1038/nrneurol.2010.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing