Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The perfect mix: recent progress in adjuvant research

Key Points

  • New vaccines are often less immunogenic than previous vaccines, and adjuvants are therefore required to assist in the induction of potent and persistent immune responses, to reduce the amount of antigen and limit the number of injections.

  • Some new vaccines also need adjuvants that are capable of inducing potent cell-mediated immunity in addition to an antibody response, such as T helper (TH) 1 responses and cytotoxic T lymphocyte (CTL) responses.

  • Recent advances in basic immunology have demonstrated the crucial role of some innate immune signals in modulating — both quantitatively and qualitatively — the subsequent adaptive response. Among these, some agonists of Toll-like receptors (TLRs) would in theory constitute promising adjuvants.

  • Vaccine research can take advantage of these discoveries to design and develop more focused and efficient adjuvants, such as new synthetic agonists of TLRs.

  • Moreover, new formulations can combine different immunostimulants, including TLR agonists and non-TLR 'classical' adjuvants. These compounds can act in synergy, and targeting them towards antigen-presenting cells could further increase and focus their action.

  • In parallel, new biochemical and immunological tools and assays have been developed to characterize and evaluate these new adjuvants, both in vitro and in vivo. The combination of information obtained in several assays, for example in animal models and human primary or transformed cells, can provide more accurate information on the potency and safety of these new adjuvants before use on humans.

  • Vaccine research scientists can now chose between a larger panel of compounds and technologies to design and develop the formulation that would drive the most efficient and safest response with respect to each considered pathogen, keeping in mind that each antigen–adjuvant couple is unique.

Abstract

Developing efficient and safe adjuvants for use in human vaccines remains both a challenge and a necessity. Past approaches have been largely empirical and generally used a single type of adjuvant, such as aluminium salts or emulsions. However, new vaccine targets often require the induction of well-defined cell-mediated responses in addition to antibodies, and thus new immunostimulants are required. Recent advances in basic immunology have elucidated how early innate immune signals can shape subsequent adaptive responses and this, coupled with improvements in biochemical techniques, has led to the design and development of more specific and focused adjuvants. In this Review, I discuss the research that has made it possible for vaccinologists to now be able to choose between a large panel of adjuvants, which potentially can act synergistically, and combine them in formulations that are specifically adapted to each target and to the relevant correlate(s) of protection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Where do adjuvants act?
Figure 2: Potential targets for adjuvants and formulations.
Figure 3: Properties of adjuvants.
Figure 4: In vivo and in vitro preclinical evaluation of adjuvants.

Similar content being viewed by others

References

  1. Ulmer, J. B., Valley, U. & Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nature Biotechnol. 24, 1377–1383 (2006).

    Article  CAS  Google Scholar 

  2. Hunter, R. L. Overview of vaccine adjuvants: present and future. Vaccine 20, S7–S12 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Schijns, V. & O'Hagan, D. (Eds) Immunopotentiators in Modern Vaccines. (Academic Press, Elsevier, 2006).

    Google Scholar 

  4. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Steinman, R. M. & Hemmi, H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 311, 17–58 (2006).

    CAS  PubMed  Google Scholar 

  6. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  7. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Harrington, L. E., Mangan, P. R. & Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the TH17 lineage. Curr. Opin. Immunol. 18, 349–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Belkaid, Y. & Rouse, B. T. Natural regulatory T cells in infectious disease. Nature Immunol. 6, 353–360 (2005).

    Article  CAS  Google Scholar 

  10. Lanzavecchia, A. & Sallusto, F. Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol. 17, 326–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Schijns, V. E. Induction and direction of immune responses by vaccine adjuvants. Crit. Rev. Immunol. 21, 75–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Barr, T. A., Carlring, J. & Heath, A. W. Co-stimulatory agonists as immunological adjuvants. Vaccine 24, 3399–3407 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). References 14, 15 and 16 identified and demonstrated the critical role of Toll and TLRs in immune defence, which opened new perspectives in basic and applied immunology.

    Article  CAS  PubMed  Google Scholar 

  17. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  18. Akira, S. TLR signaling. Curr. Top. Microbiol. Immunol. 311, 1–16 (2006).

    CAS  PubMed  Google Scholar 

  19. Flacher, V. et al. Human langerhans cells express a specific TLR profile and differentially respond to viruses and gram-positive bacteria. J. Immunol. 177, 7959–7967 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct TH responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171, 4984–4989 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates TH2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yarovinsky, F., Kanzler, H., Hieny, S., Coffman, R. L. & Sher, A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25, 655–664 (2006). References 23 and 24 show that in addition to their role in cell activation TLRs also have a direct role in foreign antigen presentation, in vitro (Ref. 23) and in vivo (Ref. 24). Activated TLRs and antigen should preferentially be in the same cargo for optimal presentation to T cells.

    Article  CAS  PubMed  Google Scholar 

  25. Ruprecht, C. R. & Lanzavecchia, A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 36, 810–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Nemazee, D., Gavin, A., Hoebe, K. & Beutler, B. Toll-like receptors and antibody responses. Nature 441, E4 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gavin, A. L. et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science 314, 1936–1938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakaguchi, S. Control of immune responses by naturally arising CD4+ regulatory T cells that express toll-like receptors. J. Exp. Med. 197, 397–401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caramalho, I. et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Pasare, C. & Medzhitov, R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21, 733–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nature Immunol. 7, 1250–1257 (2006).

    Article  CAS  Google Scholar 

  37. Traub, S., von Aulock, S., Hartung, T. & Hermann, C. MDP and other muropeptides — direct and synergistic effects on the immune system. J. Endotoxin Res. 12, 69–85 (2006).

    CAS  PubMed  Google Scholar 

  38. Lemesre, J. L. et al. Protection against experimental visceral leishmaniasis infection in dogs immunized with purified excreted secreted antigens of Leishmania infantum promastigotes. Vaccine 23, 2825–2840 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  41. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Peiser, L., Mukhopadhyay, S. & Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14, 123–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Robinson, M. et al. Myeloid C-type lectins in innate immunity. Nature Immunol. 7, 1258–1265 (2006).

    Article  CAS  Google Scholar 

  44. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 't Hart, B. A. & van Kooyk, Y. Yin-Yang regulation of autoimmunity by DCs. Trends Immunol. 25, 353–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nature Immunol. 7, 1266–1273 (2006).

    Article  CAS  Google Scholar 

  47. Fujii, S. et al. Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl Acad. Sci. USA 103, 11252–11257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moser, B. & Brandes, M. γδ T cells: an alternative type of professional APC. Trends Immunol. 27, 112–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Dougan, G. & Hormaeche, C. How bacteria and their products provide clues to vaccine and adjuvant development. Vaccine 24, S13–S19 (2006).

    Article  CAS  Google Scholar 

  50. Kaisho, T. & Akira, S. Toll-like receptors as adjuvant receptors. Biochim. Biophys. Acta 1589, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kandimalla, E. R., Yu, D. & Agrawal, S. Towards optimal design of second-generation immunomodulatory oligonucleotides. Curr. Opin. Mol. Ther. 4, 122–129 (2002).

    CAS  PubMed  Google Scholar 

  52. McCluskie, M. J & Krieg, A. M. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr. Top. Microbiol. Immunol. 311, 155–178 (2006).

    CAS  PubMed  Google Scholar 

  53. Hawkins, L. D. et al. A novel class of endotoxin receptor agonists with simplified structure, toll-like receptor 4-dependent immunostimulatory action, and adjuvant activity. J. Pharmacol. Exp. Ther. 300, 655–661 (2002). This reference shows how new synthetic TLR4 agonists can be designed, characterized and evaluated in vitro and in vivo using tools such as transformed cell lines expressing TLR4 and MD2, and NF-κB reporter genes.

    Article  CAS  PubMed  Google Scholar 

  54. Persing, D. H. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Johnston, D., Zaidi, B. & Bystryn, J. C. TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines. Cancer Immunol. Immunother. 01 Dec 2006 (doi:10.1007/500262-006-0262-3).

  56. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007). This reference presents a comprehensive review on the positive and negative interactions existing between TLRs and other PRRs.

    Article  CAS  Google Scholar 

  57. Sato, S. et al. Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J. Immunol. 165, 7096–7101 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Roelofs, M. F. et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52, 2313–2322 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol. 6, 769–776 (2005).

    Article  CAS  Google Scholar 

  60. Bagchi, A. et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol. 178, 1164–1171 (2007). References 59 and 60 show that stimulation of TLRs coupled to complementary pathways is synergistic, and that some combinations can be preferred to others, depending on which type of immune response is to be induced.

    Article  CAS  PubMed  Google Scholar 

  61. Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Takada, H. & Uehara, A. Enhancement of TLR-mediated innate immune responses by peptidoglycans through NOD signaling. Curr. Pharm. Des. 12, 4163–4172 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Fritz, J. H. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. van Heel, D. A. et al. Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease. Gut 54, 1553–1557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Watanabe, T., Kitani, A. & Strober, W. NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn's disease. Gut 54, 1515–1518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. HogenEsch, H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine 20 (Suppl. 3), 34–39 (2002).

    Article  Google Scholar 

  67. Romero Méndez, I. Z., Shi, Y., HogenEsch, H. & Hem, S. L. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25, 825–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Rimaniol, A. C. et al. Aluminium hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting type. Vaccine 22, 3127–3135 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Jordan, M. B., Mills, D. M., Kappler, J., Marrack, P. & Cambier, J. C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Aucouturier, J., Dupuis, L., Deville, S., Ascarateil, S. & Ganne, V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines. 1, 111–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Podda, A. & Del Giudice, G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev. Vaccines 2, 197–203 (2003). References 70 and 71 review the different steps followed to develop two prototype W/O and O/W emulsions from the bench to human use, taking safety and immunogenicity into consideration.

    Article  CAS  PubMed  Google Scholar 

  72. Kim, Y. J. et al. Synthetic studies of complex immunostimulants from Quillaja saponaria: synthesis of the potent clinical immunoadjuvant QS-21Aapi. J. Am. Chem. Soc. 128, 11906–11915 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marciani, D. J. et al. Fractionation, structural studies, and immunological characterization of the semi-synthetic Quillaja saponins derivative GPI-0100. Vaccine 21, 3961–3971 (2003). This reference illustrates how 'classical' adjuvants such as saponins can be further optimized and characterized with respect to safety and immunogenicity, using semi-synthesis and fractionation.

    Article  CAS  PubMed  Google Scholar 

  74. Sanders, M. T., Brown, L. E., Deliyannis, G. & Pearse, M. J. ISCOM-based vaccines: the second decade. Immunol. Cell Biol. 83, 119–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Ennis, F. A. et al. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology 259, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Leserman, L. Liposomes as protein carriers in immunology. J. Liposome Res. 14, 175–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. O'Hagan, D. T. & Singh, M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines 2, 269–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Singh, M. et al. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr. Drug Deliv. 3, 115–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Guy, B. et al. Design, characterization and preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine 19, 1794–1805 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Reddy, S. T., Swartz, M. A. & Hubbell, J. A. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 27, 573–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Boscardin, S. B. et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med. 203, 599–606 (2006). This reference shows that one needs to co-deliver a maturation stimulus when targeting receptors such as CLRs on APCs in contrast to previous studies showing that targeting these receptors without stimulus can induce tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Moron, G., Dadaglio, G. & Leclerc, C. New tools for antigen delivery to the MHC class I pathway. Trends Immunol. 25, 92–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Yamasaki, Y., Ikenaga, T., Otsuki, T., Nishikawa, M. & Takakura, Y. Induction of antigen-specific cytotoxic T lymphocytes by immunization with negatively charged soluble antigen through scavenger receptor-mediated delivery. Vaccine 25, 85–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Schellack, C. et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 24, 5461–5472 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Taneichi, M. et al. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J. Immunol. 177, 2324–2330 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Moingeon, P., Haensler, J. & Lindberg, A. Towards the rational design of Th1 adjuvants. Vaccine 19, 4363–4372 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Erdile, L. F. & Guy, B. OspA lipoprotein of Borrelia burgdorferi is a mucosal immunogen and adjuvant. Vaccine 15, 988–996 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Yoder, A. et al. Tripalmitoyl-S-glyceryl-cysteine-dependent OspA vaccination of toll-like receptor 2-deficient mice results in effective protection from Borrelia burgdorferi challenge. Infect. Immun. 71, 3894–3900 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilson, N. S. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunol. 7, 165–172 (2006).

    Article  CAS  Google Scholar 

  91. Sanchez, V. et al. Formulation of single or multiple H. pylori antigens with DC Chol adjuvant induce protection by systemic route in mice. Optimal prophylactic combinations are different from therapeutic ones. FEMS Immunol. Med. Microbiol. 30, 157–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Yewdell, J. W. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25, 533–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Pattnaik, P. et al. Immunogenicity of a recombinant malaria vaccine based on receptor binding domain of Plasmodium falciparum EBA-175. Vaccine 25, 806–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Joseph, A. et al. Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. Vaccine 20, 3342–3354 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Aurelian, L. Herpes simplex virus type 2 vaccines: new ground for optimism? Clin. Diagn. Lab. Immunol. 11, 437–445 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Drachenberg, K. J., Wheeler, A. W., Stuebner, P. & Horak, F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy 56, 498–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Creticos, P. S. et al. Immunotherapy with a ragweed-Toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 355, 1445–1455 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nature Rev. Drug Discov. 5, 471–484 (2006).

    Article  CAS  Google Scholar 

  99. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  100. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Med. 12, 1198–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Freeman, G. J., Wherry, E. J., Ahmed, R. & Sharpe, A. H. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J. Exp. Med. 203, 2223–2227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pol, S. & Michel, M. L. Therapeutic vaccination in chronic hepatitis B virus carriers. Expert Rev. Vaccines 5, 707–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Freytag, L. C. & Clements, J. D. Mucosal adjuvants. Vaccine 23, 1804–1813 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Jones, B., Pascopella, L. & Falkow, S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr. Opin. Immunol. 7, 474–483 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Clark, M. A., Blair, H. Liang, L. et al. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20, 208–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Lavelle, E. C. Targeted delivery of drugs to the gastrointestinal tract. Crit. Rev. Ther. Drug Carrier Syst. 18, 341–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Pizza, M. et al. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Glenn, G. M. et al. Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev. Vaccines 2, 253–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Weltzin, R., Guy, B., Thomas, W. D. Jr, Giannasca, P. J. & Monath, T. P. Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric Helicobacter pylori infection. Infect. Immun. 68, 2775–2782 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sesardic, D. Regulatory considerations on new adjuvants and delivery systems. Vaccine 24, S86–S87 (2006).

    Article  CAS  Google Scholar 

  112. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  113. Bluestone, J. A., St Clair, E. W. & Turka, L. A. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24, 233–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Hanke, T. Lessons from TGN1412. Lancet 368, 1569–1570 (2006).

    Article  PubMed  Google Scholar 

  116. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004). This reference presents a useful synthesis of the similarities and differences between mouse and human immunology, which should be considered when evaluating vaccines and adjuvants in this animal model.

    Article  CAS  PubMed  Google Scholar 

  117. Nahori, M. A. et al. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J. Immunol. 175, 6022–6031 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Gorden, K. K., Qiu, X. X., Binsfeld, C. C., Vasilakos, J. P. & Alkan, S. S. Cutting edge: activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J. Immunol. 177, 6584–6587 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, T., Matsuguchi, T., Tsuboi, N., Yajima, T. & Yoshikai, Y. Differences in expression of toll-like receptors and their reactivities in dendritic cells in BALB/c and C57BL/6 mice. Infect. Immun. 70, 6638–6645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Potter, C. W. & Jennings, R. Effect of priming on subsequent response to inactivated influenza vaccine. Vaccine 21, 940–945 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Spisek, R. et al. Maturation of dendritic cells by bacterial immunomodulators. Vaccine 22, 2761–2768 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez, V., Hessler, C., DeMonfort, A., Lang, J. & Guy, B. Comparison by flow cytometry of immune changes induced in human monocyte-derived dendritic cells upon infection with dengue 2 live-attenuated vaccine or 16681 parental strain. FEMS Immunol. Med. Microbiol. 46, 113–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Dunzendorfer, S., Lee, H. K., Soldau, K. & Tobias, P. S. TLR4 is the signalling but not the lipopolysaccharide uptake receptor. J. Immunol. 173, 1166–1170 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Burdin, N., Guy, B. & Moingeon, P. Immunological foundations to the quest for new vaccine adjuvants. BioDrugs 18, 79–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Jacques, P. et al. The immunogenicity and reactogenicity profile of a candidate hepatitis B vaccine in an adult vaccine non-responder population. Vaccine 20, 3644–3649 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Dupont, J. et al. A controlled clinical trial comparing the safety and immunogenicity of a new adjuvanted hepatitis B vaccine with a standard hepatitis B vaccine. Vaccine 24, 7167–7174 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Cooper, C. L. et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol. 24, 693–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Vajdy, M. et al. Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J. Gen. Virol. 87, 2253–2262 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Wille-Reece, U. et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med. 203, 1249–1258 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumar, S. et al. CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect. Immun. 72, 949–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Garcon, N., Heppner, D. G. & Cohen, J. Development of RTS, S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev. Vaccines 2, 231–238 (2003). This reference presents an example of the co-development of a vaccine antigen with a complex adjuvant formulation, composed of an oil-in-water emulsion containing MPL and QS21. It presents the different steps followed to select the best formulation, from preclinical evaluation to application in clinical trials

    Article  CAS  PubMed  Google Scholar 

  133. Alonso, P. L. et al. Duration of protection with RTS, S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366, 2012–2018 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Stewart, V. A. et al. Cutaneous delayed-type hypersensitivity (DTH) in a multi-formulation comparator trial of the anti-falciparum malaria vaccine candidate RTS, S in rhesus macaques. Vaccine 24, 6493–6502 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Zaks, K. et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol. 176, 7335–7345 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kazzaz, J. et al. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control Release 110, 566–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Xie, H. et al. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect. Immun. 73, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge J. Almond, N. Burdin, P. Chaux, F. Dalençon, J. Haensler and E. Trannoy for their support, discussions and critical reading of the manuscript. They synergized efficiently to help me formulate my work and target it in the right direction. Innate immunity and adjuvants are large fields and I apologize for not having mentioned numerous important works because of space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Vibrio cholerae

Glossary

T helper cell

(TH cell). A T cell that has cell-surface antigen receptors that bind fragments of antigens displayed by MHC class II molecules, which are expressed at the surface of antigen-presenting cells. Activated TH cells express cytokines and membrane-associated co-stimulatory molecules that help other immune cells carry out their specific functions. TH cells can be divided into subsets according to their cytokine-secretion profiles.

Dendritic cell

(DC). 'Professional' antigen-presenting cells that are found in the T-cell areas of lymphoid tissues and as minor cellular components in most tissues. They have a branched or dendritic morphology and are the most potent stimulators of naive T-cell responses.

CD4+ T cell

A subpopulation of T cells that express the CD4 receptor. These cells aid in immune responses and are therefore referred to as T helper cells.

CD8+ T cell

A subpopulation of T cells that express the CD8 receptor. CD8+ T cells recognize antigens that are presented on the surface of host cells by MHC class I molecules, leading to their destruction, and are therefore also known as cytotoxic T lymphocytes.

Regulatory T (TReg) cell

A population of CD4+ T cells that naturally express high levels of CD25 (the interleukin-2 receptor a-chain) and the transcription factor forkhead box P3 (Foxp3), and that have suppressive regulatory activity towards effector T cells and other immune cells.

TH1 cell

(T helper 1 cell). A type of activated TH cell that promotes responses associated with the production of a particular set of cytokines, including interleukin (IL)-2, interferon (IFN)-γ and tumour-necrosis factor (TNF), the main function of which is to stimulate phagocytosis-mediated defences against intracellular pathogens.

TH2 cell

(T helper 2 cell). A type of activated TH cell that participates in phagocytosis-independent responses and downregulates pro-inflammatory responses that are induced by TH1 cells. TH2 cells secrete interleukin (IL)-4, IL-5 and IL-6.

Pattern-recognition receptor

(PRR). A host receptor (such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs)) that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immune response. These can be membrane bound (such as TLRs) or soluble cytoplasmic receptors (such as NLRs).

Pathogen-associated molecular pattern

(PAMP). A molecular pattern that is found in microorganisms but not mammalian cells. Examples include bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA.

Tolerance

Immunological tolerance (central or peripheral) results from different mechanisms preventing the immune system mounting responses against (self) antigens. Peripheral tolerance occurs when mature lymphocytes encounter antigens and undergo anergy, deletion or suppression. In particular, T-cell anergy is defined by defective proliferation by previously primed T cells following restimulation, reflecting a selective defect in the activation of some TCR-induced signalling pathways.

Natural killer T cells

(NKT cells). A subpopulation of T cells that expresses both NK-cell and T-cell markers.

γδ T cells

A minor population of T cells that express the γδ T-cell receptor (TCR), and that are more abundant in epithelial-rich tissues such as the skin, gut and reproductive tract. Like NKT cells, γδ T cells can be cytolytic and produce high levels of cytokines and chemokines.

M cells

(Microfold cells). Specialized epithelial cells that deliver antigens by transepithelial vesicular transport from the gut lumen directly to intraepithelial lymphocytes and to subepithelial lymphoid tissues.

Langerhans cell

Dendritic, antigen-presenting cells that contain characteristic racquet-shaped granules, known as Birbeck granules, and which express the CD1a antigen. Principally found in the stratified squamous epithelium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guy, B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5, 396–397 (2007). https://doi.org/10.1038/nrmicro1681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing