Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional imaging in adult and paediatric brain tumours

Abstract

Imaging is a key component in the management of brain tumours, with MRI being the preferred modality for most clinical scenarios. However, although conventional MRI provides mainly structural information, such as tumour size and location, it leaves many important clinical questions, such as tumour type, aggressiveness and prognosis, unanswered. An increasing number of studies have shown that additional information can be obtained using functional imaging methods (which probe tissue properties), and that these techniques can give key information of clinical importance. These techniques include diffusion imaging, which can assess tissue structure, and perfusion imaging and magnetic resonance spectroscopy, which measures tissue metabolite profiles. Tumour metabolism can also be investigated using PET, with 18F-deoxyglucose being the most readily available tracer. This Review discusses these methods and the studies that have investigated their clinical use. A strong emphasis is placed on the measurement of quantitative parameters, which is a move away from the qualitative nature of conventional radiological reporting and presents major challenges, particularly for multicentre studies.

Key Points

  • Conventional imaging gives information largely on tumour structure and location and is increasingly being supplemented by methods that probe tissue properties, commonly referred to by the collective term 'functional imaging'

  • A range of functional imaging techniques for brain tumours that provide information on cellularity, tissue ultrastructure, metabolism and vascularity are available and best acquired as part of a multimodal protocol

  • Increasing evidence shows that these techniques can aid diagnosis, provide noninvasive prognostic biomarkers, help treatment planning and monitor the treatment of brain tumours

  • Challenges remain in determining the optimum manner for incorporating these techniques into routine clinical practice, and robust data for their role should be obtained from multicentre clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ADC maps of tumours with different cellular density.
Figure 2: DTI in a patient with glioblastoma in the right hemisphere.
Figure 3: 1H MRS of normal brain (basal ganglia).
Figure 4: PET image slices of [methyl-11C]temozolomide in a patient with glioma.112
Figure 5: Magnetic resonance spectroscopy as a noninvasive diagnostic aid.
Figure 6: MRSI showing regional metabolite variation in a heterogeneous tumour.
Figure 7: Citrate as a marker of poor prognosis in grade II astrocytomas.
Figure 8: Distinguishing tumour relapse from pseudoprogression.

Similar content being viewed by others

References

  1. Yousem, D. M., Zimmerman, R. D. & Grossman, R. I. Neuroradiology: The Requisites, 3rd edn (Mosby, Philadelphia, 2010).

    Google Scholar 

  2. Julia-Sape, M. et al. Prospective diagnostic performance evaluation of single voxel (1) MRS for typing and grading of brain tumours. NMR Biomed. 25, 661–673 (2012).

    Article  PubMed  Google Scholar 

  3. Price, S. J. et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am. J. Neuroradiol. 27, 1969–1974 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandsma, D., Stalpers, L., Taal, W., Sminia, P. & van den Bent, M. J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9, 453–461 (2008).

    Article  PubMed  Google Scholar 

  5. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  6. Stockhalm, A. L. et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J. Neurooncol. 109, 149–158 (2012).

    Article  Google Scholar 

  7. Merboldt, K. D., Hänicke, W., Bruhn, H., Gyngell, M. L. & Frahm, J. Diffusion imaging of the human brain in vivo using high-speed STEAM MRI. Magn. Reson. Med. 23, 179–192 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. McRobbie, D. W., Moore, E. A., Graves, M. J. & Prince, M. R. MRI From Picture To Proton, 2nd edn (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  10. Gillard, J. H., Waldman, A. D. & Barker, P. B. (Eds) Clinical MR Neuroimaging Physiological and Functional Techniques. (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  11. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosen, B. R., Belliveau, J. W. & Chien, D. Perfusion imaging by nuclear magnetic resonance. Magn. Reson. Q. 5, 263–281 (1989).

    CAS  PubMed  Google Scholar 

  13. Hylton, N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol. 24, 3293–3298 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Carr, D. H. et al. Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours. Lancet 1, 484–486 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Parker, G. J. et al. Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J. Magn. Reson. Imaging 7, 564–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Tofts, P. S. & Kermode, A. G. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR Imaging 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Kiselev, V. G. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn. Reson. Med. 46, 1113–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Villringer, A. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn. Reson. Med. 6, 164–174 (1998).

    Article  Google Scholar 

  19. Leach, M. O. et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer. 92, 1599–1610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leach, M. O. et al. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur. Radiol. 22, 1451–1464 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. O'Connor, J. P. et al., Dynamic contrast-enhanced imaging techniques: CT and MRI. Br. J. Radiol. 84 (Suppl. 2), S112–S120 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peet, A. C. et al. The value of magnetic resonance spectroscopy in tumour imaging. Arch. Dis. Chil. 93, 725–727 (2008).

    Article  Google Scholar 

  23. Kries, R. Issues of spectral quality in clinical 1H magnetic resonance spectroscopy and a gallery of artefacts. NMR Biomed. 17, 361–381 (2004).

    Article  CAS  Google Scholar 

  24. Preul, M. C. et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat. Med. 2, 323–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Gómez, J. M. et al. Multiproject-multicentre evaluation of automatic brain tumour classification by magnetic resonance spectroscopy. MAGMA 22, 5–18 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Scheidegger, O. et al. Optimised quantitative magnetic resonance spectroscopy for clinical routine. Magn. Reson Med. http://dx.doi.org/10.1002/mrm.24455

  27. Scott, A. M. Current status of positron emission tomography in oncology. Intern. Med. J. 31, 27–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kovanlikaya, A. et al. Untreated pediatric primitive neuroectodermal tumour in vivo: quantitation of taurine with MR spectroscopy. Radiology 236, 1020–1025 (2005).

    Article  PubMed  Google Scholar 

  29. Astrakas, L. G. et al. Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin. Cancer Res. 10, 8220–8228 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Davies, N. P. et al. Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo1H MRS at 1.5 Tesla and ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed. 23, 80–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Panigraphy, A. et al. Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: Preoperative diagnosis and characterization. AJNR Am. J. Neuroradiol. 27, 560–572 (2006).

    Google Scholar 

  32. Tate, A. R. et al. Development of a decision support system for diagnosis and grading of brain tumours using in-vivo magnetic resonance single voxel spectra. NMR Biomed. 19, 411–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Davies, N. P. et al. Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS using discriminant analysis of metabolite profiles. NMR Biomed. 21, 908–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Vicente, J. et al. Accurate classification of childhood brain tumours by in vivo1H MRS—a multi-centre study, Eur. J. Cancer doi:10.1016/j.ejca.2012.09.003.

  35. Perez-Ruiz, A. et al. The INTERPRET Decision Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics 22, 581 (2010).

    Article  Google Scholar 

  36. Higano, S. et al. Malignant astrocytic tumours: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241, 839–846 (2006).

    Article  PubMed  Google Scholar 

  37. Rumboldt, Z., Camacho, D. L., Lake, D., Welsh, C. T. & Castillo, M. Apparent diffusion coefficients for differentiation of cerebellar tumours in children. AJNR Am. J. Neuroradiol. 27, 1362–1369 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang, Y. et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion weighted MR imaging correlation with tumour grade. Radiology 261, 882–890 (2011).

    Article  PubMed  Google Scholar 

  39. Server, A. et al. Quantitative apparent diffusion coefficient in the characterisation of brain tumours and associated peritumoural edema. Acta Radiol. 50, 682–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Jaremko, J. L., Jans, L. B., Coleman, L. T. & Ditchfield, M. R. Value and limitations of diffusion weighted imaging in grading and diagnosis of pediatric posterior fossa tumours. AJNR Am. J. Neuroradiol. 31, 1613–1616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tozer, D. J. et al. Apparent diffusion coefficient histograms may predict low grade glioma subtype. NMR Biomed. 20, 49–57 (2007).

    Article  PubMed  Google Scholar 

  42. Bull, J. G., Saunders, D. E. & Clark, C. A. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. Eur. Radiol. 22, 447–457 (2012).

    Article  PubMed  Google Scholar 

  43. Jolapara, M. et al. Can diffusion tensor metrics help in preoperatively grading of diffusely infiltrating astrocytomas? A retrospective study of 36 cases. Neuroradiology 53, 63–68 (2011).

    Article  PubMed  Google Scholar 

  44. White, M. L., Zhang, Y., Yu, F. & Jaffar Kazmi, S. A. Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR Am. J. Neuroradiol. 32, 374–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brynes, T. J., Barrick, T. R., Bell, B. A. & Clark, C. A. Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases in vivo. NMR Biomed. 24, 54–60 (2011).

    Article  Google Scholar 

  46. Dunn, G. P. et al. Emerging Insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26, 756–784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugahara, T. et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am. J. Roentgenol. 171, 1479–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Arvinda, H. R. et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J. Neurooncol. 94, 87–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Law, M. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am. J. Neuroradiol. 24, 1989–1998 (2003).

    PubMed  PubMed Central  Google Scholar 

  50. Patankar, T. F. et al. Is volume transfer coefficient (Ktrans) related to histologic grade in human gliomas? AJNR Am. J. Neuroradiol. 26, 2455–2465 (2005).

    PubMed  PubMed Central  Google Scholar 

  51. Pauleit, D. et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumours. Nucl. Med. Biol. 36, 779–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Peet, A. C. et al. Magnetic resonance spectroscopy suggests key differences in the metastatic behaviour of medulloblastoma. Eur. J. Cancer. 43, 1037–1044 (2007).

    Article  PubMed  Google Scholar 

  53. Jenkinson, M. et al. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 48, 703–713 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Choi, C. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18, 624–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Server, A. et al. Proton magnetic resonance spectroscopy in the distinction of high grade cerebral gliomas from single metastatic brain tumours. Acta Radiol. 51, 316–325 (2010).

    Article  PubMed  Google Scholar 

  56. Wright, A. J. et al. Pattern recognition of MRSI data shows regions of glioma growth that agree with DTI markers of brain tumour invasion. Magn. Reson. Med. 62, 1646–1651 (2009).

    Article  PubMed  Google Scholar 

  57. Fellows, G. A. et al. Combined use of neuroradiology and 1H-MR spectroscopy may provide an intervention limiting diagnosis of glioblastoma multiforme. J. Magn. Reson. Imaging. 32, 1038–1044 (2010).

    Article  PubMed  Google Scholar 

  58. Weber, M. A. et al. Biopsy targeting gliomas: do functional imaging techniques identify similar target areas? Invest. Radiol. 45, 755–768 (2010).

    Article  PubMed  Google Scholar 

  59. Widhalm, G. et al. Value of 1H-magnetic resonance spectroscopy chemical shift imaging for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast-enhancement. J. Neurol. Psychiatry. 82, 512–520 (2010).

    Article  Google Scholar 

  60. Law, M. et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247, 490–498 (2008).

    Article  PubMed  Google Scholar 

  61. Danchaivijitr, N. et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247, 170–178 (2008).

    Article  PubMed  Google Scholar 

  62. Majos, C. et al. Proton MR spectroscopy provides relevant prognostic information in high grade gliomas. AJNR Am. J. Neuroradiol. 32, 74–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marcus, K. J. et al. Predicting survival of children with CNS tumours using proton magnetic resonance spectroscopic imaging biomarkers. Int. J. Oncol. 30, 651–657 (2007).

    CAS  PubMed  Google Scholar 

  64. Harris, L. M. et al. Magnetic resonance spectro-scopy in the assessment of pilocytic astrocytomas. Eur. J. Cancer. 44, 2640–2647 (2008).

    Article  PubMed  Google Scholar 

  65. Hattingen, E. et al. 1H MRSI and progression-free survival in patients with WHO grades II and III gliomas. Neurol. Res. 32, 593–602 (2010).

    Article  PubMed  Google Scholar 

  66. Hipp, S. J. et al. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 13, 904–909 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blüml, S. et al. Elevated citrate in pediatric astrocytomas with malignant progression. Neuro. Oncol. 13, 1107–1117 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pope, W. B. et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252, 182–189 (2009).

    Article  PubMed  Google Scholar 

  69. Bagadia, A., Purandare, H., Misra, B. K. & Gupta, S. Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions. J. Clin. Neurosci. 18, 633–639 (2011).

    Article  PubMed  Google Scholar 

  70. Romano, A. et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Euro. Radiol. 19, 2798–2808 (2009).

    Article  CAS  Google Scholar 

  71. Gulati, S. et al. Surgical resection of high-grade gliomas by blood oxygen level dependent functional magnetic resonance imaging, diffusion tensor tractography, and intraoperaive navigated 3D ultrasound. Minim. Invasive Neurosurg. 52, 17–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. D'Andrea, G. et al. Intraoperative DTI and brain mapping for surgery of neoplasm of the motor cortex and the corticospinal tract: our protocol and series in BrainSUITE. Neurosurg. Rev. 35, 401–412 (2012).

    Article  PubMed  Google Scholar 

  73. Pilli, J. J. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am. J. Neuroradiol. 31, 219–225 (2010).

    Article  Google Scholar 

  74. Bartos, R. et al. Validity of primary motor area localization with fMRI versus electrical cortical stimulation: a comparative study. Acta Neurochir. (Wien) 151, 1071–1080 (2009).

    Article  Google Scholar 

  75. Amiez, C. et al. Preoperative functional magnetic resonance imaging assessment of higher-order cognitive function in patients undergoing surgery for brain tumors. J. Neurosurg. 108, 258–268 (2008).

    Article  PubMed  Google Scholar 

  76. Ballangrud, A. M. et al. Magnetic resonance spectroscopy imaging in radiotherapy planning for recurrent glioma. Med. Phys. 38, 2724–2730 (2011).

    Article  PubMed  Google Scholar 

  77. Pirzkall, A. et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro. Oncol. 11, 842–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenschöld, P. M. et al. Photon and proton therapy planning comparison for malignant glioma based on, CT, FDG-PET, DTI-MRI and fibre tracking. Acta Oncol. 50, 777–783 (2011).

    Article  Google Scholar 

  79. Einstein, D. B. et al. Phase II Trial of radiosurgery to magnetic resonance spectroscopy-defined high risk tumour volumes in patients with glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 84, 668–674 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kovács, Á. et al., Integrating functional MRI information into radiotherapy planning of CNS tumors-early experiences. Pathol. Oncol. Res. 17, 207–217 (2011).

    Article  PubMed  Google Scholar 

  81. van den Bent, M. J. et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 12, 583–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Cao, Y. et al. Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int. J. Radiat. Oncol. Biol. Phys. 64, 876–885 (2006).

    Article  PubMed  Google Scholar 

  83. Galbán, C. J. et al. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat. Med. 15, 572–576 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Alexander, A. et al. Prognostic significance of serial magnetic resonance spectroscopies over the course of radiotherapy for patients with malignant glioma. Clin. Invest. Med. 29, 301–311 (2006).

    CAS  PubMed  Google Scholar 

  85. Quon, H. et al. Changes in serial magnetic resonance spectroscopy predict outcome in high-grade glioma during and after postoperative radiotherapy. Anticancer Res. 31, 3559–3565 (2011).

    PubMed  Google Scholar 

  86. Guillevin, R. et al. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy. Br. J. Cancer. 104, 1854–1861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nowosielski, M. et al. ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology 53, 291–302 (2011).

    Article  PubMed  Google Scholar 

  88. Hamstra, D. A. et al. Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J. Clin. Oncol. 26, 3387–3394 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hargrave, D., Chuang, N. & Bouffet, E. Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J. Neurooncol. 86, 313–319 (2008).

    Article  PubMed  Google Scholar 

  90. Nicolin, G. et al. Natural history and outcome of optic pathway gliomas in children. Pediatr. Blood Cancer 53, 1231–1237 (2009).

    Article  PubMed  Google Scholar 

  91. Bradley, D. P. et al. Examining the acute effects of cediranib (RECENTIN, AZD2171) treatment in tumour models: a dynamic contrast-enhanced MRI study using gadopentate. Magn. Reson. Imaging. 27, 377–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Sorensen, A. G. et al. A 'vascular normalization index' as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, H. et al. Serial magnetic resonance spectroscopy reveals a direct metabolic effect of cediranib in glioblastoma. Cancer Res. 71, 3745–3752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu, L. S. et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from post treatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am. J. Neuroradiol. 30, 552–558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barajas, R. F. Jr et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiotherapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253, 486–496 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zeng, Q. S. et al. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J. Neurooncol. 84, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Tsien, C. et al. Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J. Clin. Oncol. 28, 2293–2299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prat, R. et al. Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J. Clin. Neurosci. 17, 50–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Imani, F. et al. Comparison of proton magnetic resonance spectroscopy with fluorine-18 2-fluoro-deoxyglucose positron emission tomography for assessment of brain tumour progression. J. Neuroimaging 22, 184–190 (2012).

    Article  PubMed  Google Scholar 

  100. Gulyás, B. & Halldin, C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q. J. Nucl. Med. Imaging. 56, 173–190 (2012).

    Google Scholar 

  101. Grosu, A. L. et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 64–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Galldiks, N. et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging. 33, 516–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Krishnan, A. S. et al. Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246, 854–862 (2008).

    Article  PubMed  Google Scholar 

  104. Strijkers, G. J. et al. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 13, 161–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Neuner, I. et al. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur. Radiol. http://dx.doi.org/10.1007/s00330-012-2543-x

  106. Day, S. E. et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Takasawa, M., Moustafa, R. R. & Baron, J. C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39, 1629–1637 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, W. et al. Pharmacokinetic analysis of Hypoxia 18F-fluoromisonidazole dynamic PET in head and neck cancer. J. Nucl. Med. 51, 37–45 (2010).

    Article  PubMed  Google Scholar 

  109. Zhou, J. et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat. Med. 17, 130–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Functional Imaging Group [online].

  111. Panigrahy, A., Nelson, M. D. Jr & Bluml, S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr. Radiol. 40, 3–30 (2010).

    Article  PubMed  Google Scholar 

  112. Rosso, L. et al. A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res. 69, 120–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Howe, F. A. & Opstad, K. S. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 16, 123–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Wilson, M. P., Reynolds, G., Kauppinen, R. A., Arvanitis, T. A. & Peet, A. C. A constrained least-squares approach to the automated quantitation of in-vivo 1H MRS data. Magn. Reson. Med. 65, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. C. Peet, T. N. Arvanitis and M. O. Leach would like to acknowledge funding from the Cancer Research UK and Engineering and Physical Sciences Research Council Cancer Imaging Programme at the Children's Cancer and Leukaemia Group in association with the Medical Research Council and Department of Health (England) (C7809/A10342). A. D. Waldman would like to acknowledge the support of Imperial College Comprehensive Biomedical Research Centre. We would like to thank the members of the Brain Tumour Research Group at the University of Birmingham who helped to prepare figures for the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content, contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Andrew C. Peet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peet, A., Arvanitis, T., Leach, M. et al. Functional imaging in adult and paediatric brain tumours. Nat Rev Clin Oncol 9, 700–711 (2012). https://doi.org/10.1038/nrclinonc.2012.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.187

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer