Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Friedreich's ataxia gene encodes a novel phosphatidylinositol–4–phosphate 5–kinase

Abstract

The STM7 gene on chromosome 9 was recently ‘excluded‘ as a candidate for Friedreich's ataxia following the identification of an expanded intronic GAA triplet repeat in the adjacent gene, X25, in patients with the disease. Using RT–PCR, northern and sequence analyses, we now demonstrate that X25 comprises part of the STM7 gene, contributing to at least four splice variants, and report the identification of new coding sequences. Functional analysis of the STM7 recombinant protein corresponding to the reported 2.7–kilobase transcript has demonstrated PtdlnsP 5–kinase activity, supporting the idea that the disease is caused by a defect in the phosphoinositide pathway, possibly affecting vesicular trafficking or synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chamberlain, S. et al. Mapping of mutation causing Friedreich's ataxia to human chromosome 9. Nature 334, 248–249 (1988).

    Article  CAS  Google Scholar 

  2. Rodius, F. et al. Recombinations in individuals homozygous by descent, localize the Friedreich ataxia locus in a cloned 450-kb interval. Am. J. Hum. Genet. 54, 1050–1059 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Duclos, F., Rodius, F., Wrogemann, K., Mandel, J.L. & Koenig, M., Friedreich ataxia region: characterization of two novel genes and reduction of the critical region to 300kb. Hum. Molec. Genet. 3, 909–914 (1994).

    Article  CAS  Google Scholar 

  4. Montermini, L. et al. The Friedreich ataxia region spans a 150-kb interval on chromosome9q13. Am. J. Hum. Genet. 57, 1061–1067 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Campuzano, V. et al. Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  6. Carvajal, J.J. et al. Friedreich's ataxia: a defect in signal transduction? Hum. Molec. Genet. 4, 1411–1419 (1995).

    Article  CAS  Google Scholar 

  7. Yoshida, S., Ohya, Y., Nakano, A., & Anraku, Y. Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cerevisiae . Molec. Gen. Genet. 242, 631–640 (1994).

    Article  CAS  Google Scholar 

  8. Beebe, S.J. et al. Molecular cloning of a tissue-specific protein kinase (C gamma) from human testis-representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Molec. Endocrinol. 4, 465–475 (1990).

    Article  CAS  Google Scholar 

  9. Savitsky, K. et al. A single Ataxia Telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  Google Scholar 

  10. Matsumoto, M. et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379, 168–171 (1996).

    Article  CAS  Google Scholar 

  11. Boronenkov, I.V. & Anderson, R.A. The sequence of phosphatidylinosrtol-4-phosphate 5-kinase defines a novel family of lipid kinases. J. Blol. Chem. 270, 2881–2884 (1995).

    Article  CAS  Google Scholar 

  12. Divecha, N., Truong, O., Hsuan, J.J., Hinchliffe, K.A. & Irvine, R.F. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem. J. 309, 715–719 (1995).

    Article  CAS  Google Scholar 

  13. De Camilli, P., Emr, S.D., McPherson, P.S. & Novick, P. Phosphoinositides as regulators in membrane traffic. Science 271, 1533–1539 (1996).

    Article  CAS  Google Scholar 

  14. Jenkins, G.H., Fisette, R.L. & Anderson, R.A. Type I phosphatidylinositol-4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem. 269, 11547–11554 (1994).

    CAS  PubMed  Google Scholar 

  15. Bazenet, C.E., Ruano, A.R., Brockman, J.L. & Anderson, R.A. The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. J. Biol. Chem. 285, 18012–18022 (1990).

    Google Scholar 

  16. Chong, L.D., Traynor, K.A., Bokoch, G.M. & Schwartz, M.A. The small GTP-binding protein Rho regulates a phosphatidylinositol-4-pnosphate 5-kinase in mammalian cells. Cell 79, 507–513 (1994).

    Article  CAS  Google Scholar 

  17. Chamberlain, S. & Lewis, R.D. Studies of cellular hypersensitivity to ionising radiation in Friedreich's ataxia. J. Neurol. Neurosurg. Psych. 45, 1136–1138 (1982).

    Article  CAS  Google Scholar 

  18. Chamberlain, S., Cramp, W.A. & Lewis, P.D. Defects in newly synthesised DNA in skin fibroblasts from patients with Friedreich's ataxia. Lancet i, 1165 (1981).

    Article  Google Scholar 

  19. Morgan, S., Smith, A.D. & Parker, P.J. Purification and characterisation of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem. 191, 761–767 (1990).

    Article  CAS  Google Scholar 

  20. Serunian, L.A., Auger, K.R. & Cantley, L.C. Identification and quantification of polyphosphoinositides produced in response to platlet-derived growth factor. Methods Enzymol. 198, 78–87 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvajal, J., Pook, M., Santos, M. et al. The Friedreich's ataxia gene encodes a novel phosphatidylinositol–4–phosphate 5–kinase. Nat Genet 14, 157–162 (1996). https://doi.org/10.1038/ng1096-157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing