Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germline mutations in the thyrotropin receptor gene cause non–autoimmune autosomal dominant hyperthyroidism

Abstract

The thyrotropin receptor (TSHR), a member of the large family of G protein–coupled receptors, controls both the function and growth of thyroid cells via stimulation of adenylyl cyclase. We report two different mutations in the TSHR gene of affected members of two large pedigrees with non–autoimmune autosomal dominant hyperthyroidism (toxic thyroid hyperplasia), that involve residues in the third (Val509Ala) and seventh (Cys672Tyr) transmembrane segments. When expressed by transfection in COS–7 cells, the mutated receptors display a higher constitutive activation of adenylyl cyclase than wild type. This new disease entity is the germline counterpart of hyperfunctioning thyroid adenomas, in which different somatic mutations with similar functional characteristics have been demonstrated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vassart, G. & Dumont, J.E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 13, 596–611 (1992).

    CAS  PubMed  Google Scholar 

  2. Dumont, J.E., Lamy, F., Roger, P. & Maenhaut, C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol. Rev. 72, 667–697 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Van Sande, J. et al. Thyrotropin activates both the cyclic AMP and the PIP2 cascades in CHO cells expressing the human cDNA of TSH receptor. Molec. Cell Endocrinol. 74, R1–R6 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Dumont, J.E., Jauniaux, J.C. & Roger, P.P. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem. Sci. 14, 67–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Dumont, J.E., Vassart, G. & Refetoff, S. in The Metabolic Basis of Inherited Diseases (eds Scriver C.R. et al.) 1843–1879 (McGraw-Hill, New York, 1989).

    Google Scholar 

  6. Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655–659 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Suarez, H.G. et al. gsp mutations in human thyroid tumours. Oncogene 6, 677–679 (1991).

    CAS  PubMed  Google Scholar 

  8. O'Sullivan, C., Barton, C.M., Staddon, S.L., Brown, C.L. & Lemoine, N.R. Activating point mutations of the gsp oncogene in human thyroid adenomas. Molec. Carcinog. 4, 345–349 (1991).

    Article  CAS  Google Scholar 

  9. Parma, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Friedman, J.M. & Fialkow, P.J. in Werner's The Thyroid (eds Ingbar, S.H. & Braverman, L.E. ) 634–650 (Lippincott, Philadelphia, 1987).

    Google Scholar 

  11. Thomas, J.S. et al. Familial hyperthyroidism without evidence of autoimmunity. Acta Endocrinol. Copenh. 100, 512–518 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, P.R., Cohen, G.B., Zhukovsky, E.A. & Oprian, D.D. Constitutively active mutants of rhodopsin. Neuron 9, 719–725 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Snenker, A. et al. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 369, 652–654 (1993).

    Article  Google Scholar 

  14. Gross, B., Misrahi, M., Sar, S. & Milgrom, E. Composite structure of the human thyrotropin receptor gene. Biochem. Biophys. res. Commun. 177, 679–687 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Libert, F. et al. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem. Biophys. res. Commun. 165, 1250–1255 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Cotecchia, S., Exum, S., Caron, M.G. & Lefkowitz, R.J. Regions of the alpha 1 adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. natn. Acad. Sci. U.S.A. 87, 2896–2900 (1990).

    Article  CAS  Google Scholar 

  18. Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. & Lefkowitz, R.J. Constitutive activation of the alpha 1B adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J. biol. Chem. 287, 1430–1433 (1992).

    Google Scholar 

  19. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R.J. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J. biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  20. Ren, Q., Kurose, H., Lefkowitz, R.J. & Cotecchia, S. Constitutively active mutants of the α2-adrenergic receptor. J. biol. Chem. 268, 16483–16487 (1993).

    CAS  PubMed  Google Scholar 

  21. Kosugi, S. et al. Substitutions of different regions of the third cytoplasmic loop of the TSH receptor have selective effects on constitutive, TSH-, and TSH receptor autoantibody-stimulated phosphoinositide and cAMP signal generation. Molec. Endocrinol. 7, 1009–1020 (1994).

    Google Scholar 

  22. Cohen, G.B., Yang, T., Robinson, P.R. & Oprian, D.D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32, 6111–6115 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, G.B., Oprian, D.D. & Robinson, P.R. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 31, 12592–12601 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Kosugi, S. et al. Mutation of Alanine 623 in the third cytoplasmic loop of the rat TSH receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J. biol. Chem. 267, 24153–24156 (1992).

    CAS  PubMed  Google Scholar 

  25. Schertler, G.F., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Baldwin, J.M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruf, J., Carayon, P. & Lissitzky, S. Various expressions of a unique antihuman thyroglobuiin antibody repertoire in normal state and autoimmune disease. Eur. J. Immunol. 15, 268–272 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. McKenzie, J.M. & Zakarijia, M. Clinical reviews: The clinical use of thyrotropin receptor antibody measurements. J. clin. endocrinol. Metab. 69, 1093–1096 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Robbins, L.S. et al. Pigmentation phenotypes of variant extension locus alleles results from point mutations that alter MSH receptor function. Cell 72, 827–834 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Leclere, J. et al. Behavior of thyroid tissue from patients with Graves' disease in nude mice. J. clin. endocrinol. Metab. 59, 175–177 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Leclere, J. & Thomas, J.L. Diffuse nonautoimmune hyperthyroidism. Ann. Endocrinol. Paris. 43, 553–568 (1982).

    CAS  PubMed  Google Scholar 

  32. Brooker, G., Harper, J.F., Terasaki, W.L. & Moylan, R.D. Radioimmunoassy of cyclic AMP and cyclic GMP. Adv. Cyclic. Nucl. Res. 10, 1–33 (1979).

    CAS  Google Scholar 

  33. Berridge, M.J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849–858 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duprez, L., Parma, J., Van Sande, J. et al. Germline mutations in the thyrotropin receptor gene cause non–autoimmune autosomal dominant hyperthyroidism. Nat Genet 7, 396–401 (1994). https://doi.org/10.1038/ng0794-396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing