Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2CI cotransporter NKCC2

Abstract

Inherited hypokalaemic alkalosis with low blood pressure can be divided into two groups — Gitelman's syndrome, featuring hypocalciuria, hypomagnesaemia and milder clinical manifestations, and Bartter's syndrome, featuring hypercalciuria and early presentation with severe volume depletion. Mutations in the renal Na–Cl cotransporter have been shown to cause Gitelman's syndrome. We demonstrate linkage of Bartter's syndrome to the renal Na–K–2Cl cotransporter gene NKCC2, and identify frameshift or non–conservative missense mutations for this gene that co–segregate with the disease. These findings demonstrate the molecular basis of Bartter's syndrome, provide the basis for molecular classification of patients with inherited hypokalaemic alkalosis, and suggest potential phenotypes in heterozygous carriers of NKCC2 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lifton, R.R. et al. A chimaeric 11 beta-hydroxylase/aldosterane synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265 (1992).

    Article  CAS  Google Scholar 

  2. Shimkets, R.A. et al. Liddle's syndrome: heritable human hypertension caused by mutations in the β-subunit of the epithelial sodium channel. Cell 79, 407–414 (1994).

    Article  CAS  Google Scholar 

  3. Hansson, J.H. et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle's syndrome. Nature Genet. 11, 76–82 (1995).

    Article  CAS  Google Scholar 

  4. Chang, S.S. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypo-aldosteronism type 1. Nature Genet. 12, 248–253 (1996).

    Article  CAS  Google Scholar 

  5. Mune, T. et al. Human hypertension caused by mutations in the kidney isozyme of 11β-hydroxysteroid dehydrogenase. Nature Genet. 10, 394–399 (1995).

    Article  CAS  Google Scholar 

  6. Bartter, E.C. et al. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalaemic alkalosis. A new syndrome. Am. J. Med. 33, 811–628 (1962).

    Article  CAS  Google Scholar 

  7. Goodman, A.D., Vagnucci, A.H. & Hartroft, P.M. Pathogenesis of Bartter's syndrome. N. Eng. J. Med. 281, 1435–1439 (1969).

    Article  CAS  Google Scholar 

  8. Dunn, M.J Prostaglandins and Bartter's syndrome. Kidney Int. 18, 86–102 (1981).

    Article  Google Scholar 

  9. Silverberg, A.B., Mennes, P.A. & Cryer, R.E. Resistance to endogenous norepinephrine in Bartter's syndrome. Reversion during indomethacin administration. Am. J. Med. 64, 231–235 (1978).

    Article  CAS  Google Scholar 

  10. Bettinelli, A. et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalaemic alkalosis: Bartter and Gitelman syndromes. J. Pediatr. 120, 38–43 (1992).

    Article  CAS  Google Scholar 

  11. Hetzel, W. & Molitor, H., Paresen, schmerzsyndrome, bewubtseinsstorrungen: zum neurologischen erscheinungsbild des Bartter-Syndroms. Nevenarzt 62, 500–505 (1991).

    CAS  Google Scholar 

  12. Iwata, R., Hanawa, Y. & Takashima, H. Chronic hypomagnesemia and hypokalemia due to renal salt wasting in siblings. Acta Paed. Japonica. 35, 252–257 (1993).

    Article  CAS  Google Scholar 

  13. Marco-Franco, J.E. et al. Long-term evolution and growth patterns in a family with Bartter's syndrome. Clin. Nephrol. 42, 33–37 (1994).

    CAS  PubMed  Google Scholar 

  14. Zarraga Larrondo, S. et al. Familial hypokalemia-hypomagnesemia or Gitelman's syndrome: a further case. Nephron 62, 340–344 (1992).

    Article  CAS  Google Scholar 

  15. Smilde, T.J. et al. Familial hypokalemia/hypomagnesemia and chondrocalcinosis. J. Rheumatol. 21, 1515–1519 (1994).

    CAS  PubMed  Google Scholar 

  16. Simopoulos, A.R. Growth characteristics in patients with Bartter's syndrome. Nephron 23, 130–135 (1979).

    Article  CAS  Google Scholar 

  17. Clive, D.M. Bartter's syndrome: the unsolved puzzle. Am. J. Kid. Dis. 25, 813–823 (1995).

    Article  CAS  Google Scholar 

  18. Gitelman, H.J., Graham, J.B. & Welt, L.G. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Phys. 79, 221–235 (1966).

    CAS  PubMed  Google Scholar 

  19. McCredie, D.A., Rotenberg, E. & Williams, A.L. Hypercalciuria in potassium-losing nephropathy: a variant of Bartter's syndrome. Aust. Paediat J. 10, 286–295 (1974).

    CAS  PubMed  Google Scholar 

  20. Matsumoto, J. et al. Hypercalciuric Bartter syndrome: resolution of nephrocalcinosis with indomethacin. Am. J. Roentgen. 152, 1251–1253 (1989).

    Article  CAS  Google Scholar 

  21. Ohlsson, A. et al. A variant of Bartter's syndrome. Bartter's syndrome associated with hydramnios, prematurity, hypercalciuria and nephrocalcinosis. Acta Paed. Scand. 73, 868–874 (1985).

    Article  Google Scholar 

  22. Bianchetti, M.G. et al. Calciuria in Bartter's and similar syndromes. Clin. Nephrol. 38, 338(1992).

    CAS  PubMed  Google Scholar 

  23. Simon, D.B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-CI cotransporter. Nature Genet. 12, 24–30 (1996).

    Article  CAS  Google Scholar 

  24. Gill, J.R. & Bartter, F.C. Evidence for a prostaglandin-independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter's syndrome. Am. J. Med. 65, 766–772 (1978).

    Article  CAS  Google Scholar 

  25. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol. Rev. 65, 760–797 (1985).

    Article  CAS  Google Scholar 

  26. Greger, R. & Schlatter, E. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin. Woschenschr. 61, 1019–1027 (1991).

    Article  Google Scholar 

  27. Gamba, G. et al. Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J. Biol. Chem. 26, 17713–17722 (1994).

    Google Scholar 

  28. Payne, J.A. & Forbush, B. Alternatively spliced isoforms of the putative renal Na-K-CI cotransporter are differentially distributed within the rabbit kidney. Proc. Natl. Acad. Sci. USA 91, 4544–4548 (1994).

    Article  CAS  Google Scholar 

  29. Igarashi, R et al. Cloning, embryonic expression and alternative splicing of a murine kidney-specific Na-K-CI cotransporter. Am. J. Physiol. 269, F405–F418 (1995).

    CAS  PubMed  Google Scholar 

  30. Xu, J.-C. et al. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-CI cotransporter. Proc. Natl. Acad. Sci. USA 91, 2201–2205 (1994).

    Article  CAS  Google Scholar 

  31. Payne, J.A. et al. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-CI cotransporter in human colon. J. Biol. Chem. 270, 17977–17985 (1995).

    Article  CAS  Google Scholar 

  32. Di Pietro, A. et al. La terapia con indometacina interferisce con I'accrescimento nella sindrome di Bartter dell'infanzia? Pediat. Med. Chir. 13, 279–280 (1991).

    CAS  Google Scholar 

  33. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  34. Orita, M. et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  35. loannou, PA et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  36. Quaggin, S.E., Payne, J.A.,, Forbush, B. & Igarashi, P. Localization of the renal Na-K-2CI cotransporter gene (Slc12a1) on mouse chromosome 2. Mamm. Genome 6, 557–561 (1995).

    Article  CAS  Google Scholar 

  37. Sutton, RAR & Dirks, J.J. Renal handling of calcium, phosphate and magnesium. In The Kidney (eds Brenner, B.M. * Rector, F.C.) 551–618 (Saunders, Philadelphia, 1981).

    Google Scholar 

  38. Seyberth, H.W. et al. Role of prostaglandins in hyperprostaglandin E syndrome and in selected renal tubular disorders. Pediat. Nephrol. 1, 491–497 (1987).

    Article  CAS  Google Scholar 

  39. Gill, J.R. et al. Bartter's syndrome: a disorder characterized by high urinary prostaglandins and a dependence of hyperreninemia on prostaglandin synthesis. Am. J. Med. 61, 43–51 (1976).

    Article  Google Scholar 

  40. Gullner, H.-G., Gill, J.R. & Bartter, F.C. Correction of hypokalaemia by magnesium repletion in familial hypokalaemic alkalosis with tubulopathy. Am. J. Med. 71, 578–582 (1981).

    Article  CAS  Google Scholar 

  41. Gladziwa, U. et al. Chronic hypokalemia of adults: Gitelman's syndrome is frequent but classical Bartter's syndrome is rare. Nepmol. Dial. Transplant. 10, 1607–1613 (1995).

    CAS  Google Scholar 

  42. Cooper, D.N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83, 181–188 (1989).

    Article  CAS  Google Scholar 

  43. Lloyd, S.E. et al. A common molecular basis for three inherited kidney stone-diseases. Nature 379, 445–449 (1996).

    Article  CAS  Google Scholar 

  44. Bell, G., Karam, J. & Rutter, W. Polymorphic DNA region adjacent to the 5- end of the human insulin gene. Proc. Natl. Acad. Sci. USA 78, 5759–5763 (1981).

    Article  CAS  Google Scholar 

  45. Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  46. Lathrop, G.M. et al. Strategies for multilocus linkage in humans. Proc. Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D., Karet, F., Hamdan, J. et al. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2CI cotransporter NKCC2. Nat Genet 13, 183–188 (1996). https://doi.org/10.1038/ng0696-183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing