Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The potential and challenges of nanopore sequencing

Abstract

A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for $1,000 in 24 h.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to nanopore sequencing.
Figure 2: A nanopore reader with chemically functionalized probes.

Similar content being viewed by others

References

  1. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kang, X.F., Gu, L.-Q., Cheley, S. & Bayley, H. Single protein pores containing molecular adapters at high temperatures. Angew. Chem. Int. Edn Engl. 44, 1495–1499 (2005).

    Article  CAS  Google Scholar 

  4. Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single oligonucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Deamer, D.W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Nakane, J.J., Akeson, M. & Marziali, A. Nanopore sensors for nucleic acid analysis. J. Phys. Condens. Matter 15, R1365–R1393 (2003).

    Article  CAS  Google Scholar 

  9. Healy, K. Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Wanunu, M. & Meller, A. Single-molecule analysis of nucleic acids and DNA-protein interactions using nanopores. in Single-Molecule Techniques: A Laboratory Manual (eds. Selvin, P. & Ha, T.J.), p 395–420 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2008).

    Google Scholar 

  11. Tobkes, N., Wallace, B.A. & Bayley, H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 24, 1915–1920 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Harrell, C.C. et al. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22, 10837–10843 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schloss, J.A. How to get genomes at one ten-thousandth the cost. Nat. Biotechnol. 26, 1113–1116 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Shendure, J. & Hanlee, J. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Rothberg, J.M. & Leamon, J. The development and impact of 454 sequencing. Nat. Biotechnol. 26, 1117–1124 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Meller, A. & Branton, D. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23, 2583–2591 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ashkenasy, N., Sanchez-Quesada, J., Bayley, H. & Ghadiri, M.R. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew. Chem. Int. Ed. 44, 1401–1404 (2005).

    Article  CAS  Google Scholar 

  20. Aksimentiev, A., Heng, J.B., Timp, G. & Schulten, K. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87, 2086–2097 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muthukumar, M. & Kong, C.Y. Simulation of polymer translocation through protein channels. Proc. Natl. Acad. Sci. USA 103, 5273–5278 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, H., Qian, S. & Bau, H.H. The effect of translocating cylindrical particles on the ionic current through a nanopore. Biophys. J. 92, 1164–1177 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Drmanac, R. et al. Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv. Biochem. Eng. Biotechnol. 77, 75–101 (2002).

    CAS  PubMed  Google Scholar 

  25. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling, X.S., Bready, B. & Pertsinidis, A. Hybridization-assisted nanopore sequencing of nucleic acids. US patent application no. 2007 0190542 (2007).

  27. Jett, J.H. et al. High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J. Biomol. Struct. Dyn. 7, 301–309 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Astier, Y., Braha, O. & Bayley, H. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128, 1705–1710 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, H.-C., Astier, Y., Maglia, G., Mikhailova, E. & Bayley, H. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129, 16142–16148 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Soni, G.V. & Meller, A. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin. Chem. 53, 1996–2001 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, J.W. & Meller, A. Rapid DNA sequencing by direct nanoscale reading of nucleotide bases on individual DNA chains. in Perspectives in Bioanalysis vol. 2, (ed. Mitchelson, K.), 245–263 (Elsevier, Oxford, UK, 2007).

    Google Scholar 

  32. Lexow, P. Sequencing method using magnifying tags. US Patent 6,723,513 B2 (2004).

  33. Sauer-Budge, A.F., Nyamwanda, J.A., Lubensky, D.K. & Branton, D. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90, 2381011–2381014 (2003).

    Article  CAS  Google Scholar 

  34. Kim, M.J., Wanunu, M., Bell, D.C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).

    Article  CAS  Google Scholar 

  35. Zwolak, M. & Di Ventra, M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Zikic, R. et al. Characterization of the tunneling conductance across DNA bases. Phys. Rev. E 74, 011919 (2006).

    Article  CAS  Google Scholar 

  37. Meunier, V. & Krstic, P.S. Enhancement of the transverse conductance in DNA nucleotides. J. Chem. Phys. 128, 041103 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, X.-G., Krstic, P.S., Zikic, R., Wells, J.C. & Fuentes-Cabrera, M. First-principles transversal DNA conductance deconstructed. Biophys. J. 91, L04–L06 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384–2390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meng, S., Maragakis, P., Papaloukas, C. & Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 47, 45–50 (2007).

    Article  CAS  Google Scholar 

  42. Xu, M., Endres, R.G. & Arakawa, Y. The electronic properties of DNA bases. Small 3, 1539–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zwolak, M. & DiVentra, M. Physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).

    Article  Google Scholar 

  44. Golovchenko, J. The tunneling microscope: a new look at the atomic world. Science 232, 48–53 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Ohshiro, T. & Umezawa, Y. Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases. Proc. Natl. Acad. Sci. USA 103, 10–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. He, J., Lin, L., Zhang, P. & Lindsay, S. Identification of DNA base-pairing via tunnel-current decay. Nano Lett. 7, 3854–3858 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michel, B., Novotny, L. & Durig, U. Low-temperature compatible I–V converter. Ultramicroscopy 42–44, 1647–1652 (1992).

  48. Hughes, M.E., Brandin, E. & Golovchenko, J.A. Optical absorption of DNA-carbon nanotube structures. Nano Lett. 7, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heng, J.B. et al. Beyond the gene chip. Bell Labs Tech. J. 10, 5–22 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gracheva, M.E. et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17, 622–633 (2006).

    Article  CAS  Google Scholar 

  51. Sigalov, G., Comer, J., Timp, G. & Aksimentiev, A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8, 56–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Storm, A.J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 7, 1193–1197 (2005).

    Article  CAS  Google Scholar 

  53. Gracheva, M.E., Aksimentiev, A. & Leburton, J.-P. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17, 3160–3165 (2006).

    Article  CAS  Google Scholar 

  54. Fologea, D., Brandin, E., Uplinger, J., Branton, D. & Li, J. DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28, 3186–3192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mathe, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Gershow, M. & Golovchenko, J.A. Recapturing and trapping single molecules with a solid state nanopore. Nature Nanotechnology 2, 775–779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, P. et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smeets, R.M.M. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Meller, A. Dynamics of polynucleotide transport through nanometer-scale pores. J. Phys. Condens. Matt. 15, R581–R607 (2003).

    Article  CAS  Google Scholar 

  61. Heng, J.B. et al. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lubensky, D.K. & Nelson, D.R. Driven polymer translocation through a narrow pore. Biophys. J. 77, 1824–1838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chern, S.S., Cardenas, A.E. & Coalson, R.D. Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall. J. Chem. Phys. 115, 7772–7782 (2001).

    Article  CAS  Google Scholar 

  64. Loebl, H.C., Randel, R., Goodwin, S.P. & Matthai, C.C. Simulation studies of polymer translocation through a channel. Phys. Rev. E. 67, 041913–041911 - 041913–041915 (2003).

    Article  CAS  Google Scholar 

  65. Matysiak, S., Montesi, A., Pasquali, M., Kolomeisky, A.B. & Clementi, C. Dynamics of polymer translocation through nanopores. Theory meets experiment. Phys. Rev. Lett. 96, 118103 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Huopaniemi, I., Luo, K., Ala-Nissila, T. & Ying, S.C. Langevin dynamics simulations of polymer translocation through nanopores. J. Chem. Phys. 125, 124901 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, P. & Li, C.M. Nanopore unstacking of single-stranded DNA helices. Small 3, 1204–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Zhao, X., Payne, C.M., Cummings, P. & Lee, J.W. Single stranded DNA molecules translocation through nanoelectrode gaps. Nanotechnology 18, 424018 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cheikh, C. & Koper, G. Influence of the stick-slip transition on the electrokinetic behavior of nanoporous material. Physica A 373, 21–28 (2007).

    Article  Google Scholar 

  70. Nakane, J., Wiggin, M. & Marziali, A. A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J. 87, 615–621 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tropini, C. & Marziali, A. Multi-nanopore force spectroscopy for DNA analysis. Biophys. J. 92, 1632–1637 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Wiggin, M.W., Tropini, C.T., Tabard-Cossa, V. Jetha, N.N., & Marziali, A. Non-exponential kinetics of DNA escape from α-hemolysin nanopores. Biophys. J. published online, doi:101529/biophysj.108.137760 (5 September 2008).

  73. Wanunu, M., Chakrabarti, B., Mathe, J., Nelson, D.R. & Meller, A. Orientation-dependent interactions of DNA with an α-hemolysin channel. Phys. Rev. E 77, 031904 (2008).

    Article  CAS  Google Scholar 

  74. Mathe, J., Aksimentiev, A., Nelson, D.R., Schulten, K. & Meller, A. Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proc. Natl. Acad. Sci. USA 102, 12377–12382 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fologea, D., Uplinger, J., Thomas, B., McNabb, D.S. & Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Payne, C.M., Zhao, X., Vlcek, L. & Cummings, P. Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics. J. Phys. Chem. B 112, 1712–1717 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Hornblower, B. et al. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2, 718–724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cockroft, S.L., Chu, J., Amorin, M. & Ghadiri, M.R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Joyce, C.M. & Steitz, T.A. Function and structure relationships in DNA-polymerases. Annu. Rev. Biochem. 63, 777–822 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Wanunu, M. & Meller, A. Chemically-modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N.N. & Marziali, A. Noise analysis and reduction in solid-state nanopores. Nanotechnology 18, 305505–305510 (2007).

    Article  CAS  Google Scholar 

  84. Kang, X.F., Cheley, S., Rice-Ficht, A.C. & Bayley, H. A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc. 129, 4701–4705 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Holden, M.A. & Bayley, H. Direct introduction of single protein channels and pores into lipid bilayers. J. Am. Chem. Soc. 127, 6502–6503 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Holden, M.A., Jayasinghe, L., Daltrop, O., Mason, A. & Bayley, H. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2, 314–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. White, R.J. et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129, 11766–11775 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–541 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Branton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branton, D., Deamer, D., Marziali, A. et al. The potential and challenges of nanopore sequencing. Nat Biotechnol 26, 1146–1153 (2008). https://doi.org/10.1038/nbt.1495

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing