Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

An evolving scientific basis for the prevention and treatment of pediatric obesity

Abstract

The 2013 Pennington Biomedical Research Center’s Scientific Symposium focused on the treatment and management of pediatric obesity and was designed to (i) review recent scientific advances in the prevention, clinical treatment and management of pediatric obesity, (ii) integrate the latest published and unpublished findings and (iii) explore how these advances can be integrated into clinical and public health approaches. The symposium provided an overview of important new advances in the field, which led to several recommendations for incorporating the scientific evidence into practice. The science presented covered a range of topics related to pediatric obesity, including the role of genetic differences, epigenetic events influenced by in utero development, pre-pregnancy maternal obesity status, maternal nutrition and maternal weight gain on developmental programming of adiposity in offspring. Finally, the relative merits of a range of various behavioral approaches targeted at pediatric obesity were covered, together with the specific roles of pharmacotherapy and bariatric surgery in pediatric populations. In summary, pediatric obesity is a very challenging problem that is unprecedented in evolutionary terms; one which has the capacity to negate many of the health benefits that have contributed to the increased longevity observed in the developed world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lobstein T, Baur L, Uauy R, for the International Obesity Task Force. Obesity in children and young people: a crisis in public health. Obes Rev 2004; 5: 4–85.

    Article  PubMed  Google Scholar 

  2. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH . Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869–873.

    Article  CAS  PubMed  Google Scholar 

  3. Schwimmer JB, Burwinkle TM, Varni JW . Health-related quality of life of severely obese children and adolescents. JAMA 2003; 289: 1813–1819.

    Article  PubMed  Google Scholar 

  4. Williams J, Wake M, Hesketh K, Maher E, Waters E . Health-related quality of life of overweight and obese children. JAMA 2005; 293: 70–76.

    Article  CAS  PubMed  Google Scholar 

  5. Freedman DS, Katzmarzyk PT, Dietz WH, Srinivasan SR, Berenson GS . Relation of body mass index and skinfold thicknesses to cardiovascular disease risk factors in children: the Bogalusa Heart Study. Am J Clin Nutr 2009; 90: 210–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS . Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics 2004; 114: e198–e205.

    PubMed  Google Scholar 

  7. Janssen I, Craig WM, Boyce WF, Pickett W . Associations between overweight and obesity with bullying behaviors in school-aged children. Pediatrics 2004; 113: 1187–1194.

    PubMed  Google Scholar 

  8. Puhl RM, Peterson JL, Luedicke J . Weight-based victimization: bullying experiences of weight loss treatment-seeking youth. Pediatrics 2013; 131: e1–e9.

    PubMed  Google Scholar 

  9. Wang G, Dietz WH . Economic burden of obesity in youths aged 6 to 17 years: 1979–1999. Pediatrics 2002; 109: E81.

    PubMed  Google Scholar 

  10. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK . Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 2008; 16: 2323–2330.

    Google Scholar 

  11. De Onis M, Garza C, Victoria CG, Bhan M, Norum KR . The WHO Multicentre Growth Reference Study (MGRS): rationale, planning, and implementation. Food Nutr Bull 2004; 25 : S3–S84.

    Google Scholar 

  12. De Onis M, Onyanga AW, Borghi E, Siyam A, Nishida C, Siekmann J . Development of a WHO growth reference for school-aged children and adolescents. Bull WHO 2007; 85: 660–667.

    PubMed  PubMed Central  Google Scholar 

  13. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH . Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000; 320: 1240–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cole TJ, Lobstein T . Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 2012; 7: 284–294.

    CAS  PubMed  Google Scholar 

  15. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z et al. 2000 CDC growth charts for the United States: Methods and development. Vital Health Stat 11 2002; 246: 1–190.

    Google Scholar 

  16. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 2012; 307: 483–490.

    PubMed  PubMed Central  Google Scholar 

  17. Skelton JA, Cook SR, Auinger P, Klein JD, Barlow SE . Prevalence and trends of severe obesity among US children and adolescents. Acad Pediatr 2009; 9: 322–329.

    PubMed  PubMed Central  Google Scholar 

  18. Wang YC, Gortmaker SL, Taveras EM . Trends and racial/ethnic disparities in severe obesity among US children and adolescents, 1976–2006. Int J Pediatr Obes 2011; 6: 12–20.

    Google Scholar 

  19. Wang Y, Lim H . The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psychiatry 2012; 24: 176–188.

    PubMed  PubMed Central  Google Scholar 

  20. Ogden CL, Carroll MD . Prevalence of obesity among children and adolescents: United States, trends 1963–65 through 2007–2008. NCHS Health E Stat 2010.Available at: www.cdc.gov/nchs/data/hestat/obesity_child_07_08/obesity_child_07_08.htm.

  21. Olds T, Maher C, Zumin S, Peneau S, Lioret S, Castetbon K et al. Evidence that the prevalence of childhood overweight is plateauing: data from nine countries. Int J Pediatr Obes 2011; 6: 342–360.

    PubMed  Google Scholar 

  22. Pan L, Blanck HM, Sherry B, Dalenius K, Grummer-Stawn LM Trends in the prevalence of extreme obesity among US preschool-aged children living in low-income families, 1998–2010. JAMA 2012; 308: 2563–2565.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Slatkin M . Epigenetic inheritance and the missing heritability problem. Genetics 2009; 182: 845–850.

    PubMed  PubMed Central  Google Scholar 

  24. Beales PL . Obesity in single gene disorders. Prog Mol Biol Transl Sci 2010; 94: 125–157.

    CAS  PubMed  Google Scholar 

  25. Beales PL, Farooqi IS, O’Rahilly S (eds). The Genetics of Obesity Syndromes. Oxford University Press: Oxford, 2009.

  26. Ramachandrappa S, Farooqi IS . Genetic approaches to understanding human obesity. J Clin Invest 2011; 121: 2080–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lanktree MB, Johansen CT, Joy TR, Hegele RA . A translational view of the genetics of lipodystrophy and ectopic fat deposition. Prog Mol Biol Transl Sci 2010; 94: 159–196.

    CAS  PubMed  Google Scholar 

  28. Visscher PM, Hill WG, Wray NR . Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 2008; 9: 255–266.

    CAS  PubMed  Google Scholar 

  29. Magnus P, Gjessing HK, Skrondal A, Skjaerven R . Paternal contribution to birth weight. J Epidemiol Community Health 2001; 55: 873–877.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J . Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr 2010; 91: 1560–1567.

    CAS  PubMed  Google Scholar 

  31. Loos RJ . Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 2012; 26: 211–226.

    CAS  PubMed  Google Scholar 

  32. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al. Association analyses of 249 796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM . Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 2013; 14: 507–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuk O, Hechter E, Sunyaev SR, Lander ES . The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 2012; 109: 1193–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Visscher PM, Yang J, Goddard ME . A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. Twin Res Hum Genet 2010; 13: 517–524.

    PubMed  Google Scholar 

  36. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L . Finding the sources of missing heritability in a yeast cross. Nature 2013; 494: 234–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G et al. The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  39. Hainer V, Stunkard AJ, Kunesova M, Parizkova J, Stich V, Allison DB . Intrapair resemblance in very low calorie diet-induced weight loss in female obese identical twins. Int J Obes Relat Metab Disord 2000; 24: 1051–1057.

    CAS  PubMed  Google Scholar 

  40. Li S, Zhao JH, Luan J, Ekelund U, Luben RN, Khaw KT et al. Physical activity attenuates the genetic predisposition to obesity in 20 000 men and women from EPIC-Norfolk prospective population study. PLoS Med 2010; 7: pii e1000332.

    PubMed  PubMed Central  Google Scholar 

  41. Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218 166 adults and 19 268 children. PLoS Med 2011; 8: e1001116.

    PubMed  PubMed Central  Google Scholar 

  42. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 2012; 367: 1387–1396.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Symonds ME, Pope M, Sharkey D, Budge H . Adipose tissue and fetal programming. Diabetologia 2012; 55: 1597–1606.

    CAS  PubMed  Google Scholar 

  44. Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP . The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest 1979; 63: 239–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

    CAS  PubMed  Google Scholar 

  46. Pearce LR, Atanassova N, Banton MC, Bottomley B, van der Klaauw AA, Revelli JP et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 2013; 155: 765–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu J, Cohen P, Spiegelman BM . Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27: 234–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Symonds ME . Brown adipose tissue growth and develoment. Scientifica (Cairo) 2013; 305763.

  49. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    CAS  PubMed  Google Scholar 

  50. Symonds ME, Stephenson T, Gardner DS, Budge H . Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev 2007; 19: 53–63.

    PubMed  Google Scholar 

  51. Cannon B, Connoley E, Obregon M-J, Nedergaard J . Perinatal activation of brown adipose tissue. In: Kunzel W, Jesen A (eds). The Endocrine Control of the Fetus. Springer Verlag: Berlin, 1988, pp 306–320.

    Google Scholar 

  52. Aherne W, Hull D . Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 1966; 91: 223–234.

    CAS  PubMed  Google Scholar 

  53. Robinson L, Ojha S, Symonds ME, Budge H . Body mass index as a determinant of brown adipose tissue function as measured by thermal imaging in healthy children. J Pediatr 2013; 164: 318–322 e1.

    PubMed  Google Scholar 

  54. Pope M, Budge H, Symonds ME . The developmental transition of ovine adipose tissue through early life. Acta Physiol 2013; 210: 20–30.

    Google Scholar 

  55. Symonds ME, Sebert SP, Budge H . Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal 2010; 4: 1075–1083.

    CAS  PubMed  Google Scholar 

  56. Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S et al. Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab 2013; 62: 137–145.

    CAS  PubMed  Google Scholar 

  57. Griffith R, Lluberas R, Luhrman M Gluttony in England? Long-term change in diet. Institute for Fiscal Studies, 2013.

  58. Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013; 17: 210–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013; 110: 3387–3392.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J . Recruited vs nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues. Am J Physiol Endocrinol Metab 2012; 302: E19–E31.

    CAS  PubMed  Google Scholar 

  61. Kozak LP, Koza RA . The genetics of brown adipose tissue. Prog Mol Biol Transl Sci 2010; 94: 75–123.

    CAS  PubMed  Google Scholar 

  62. Symonds ME, Budge H, Frazier-Wood AC . Epigenetics and obesity: a relationship waiting to be explained. Hum Hered 2013; 75: 90–97.

    CAS  PubMed  Google Scholar 

  63. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 2012; 31: 1405–1426.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lawlor DA, Relton C, Sattar N, Nelson SM . Maternal adiposity—a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol 2012; 8: 679–688.

    PubMed  Google Scholar 

  65. Bloor ID, Sebert SP, Saroha V, Gardner DS, Keisler DH, Budge H et al. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep. Endocrinology 2013; 154: 3622–3631.

    CAS  PubMed  Google Scholar 

  66. Bloor ID, Sebert SP, Mahajan RP, Symonds ME . The influence of sex on early stage markers of kidney dysfunction in response to juvenile obesity. Hypertension 2012; 60: 991–997.

    CAS  PubMed  Google Scholar 

  67. Sacks H, Symonds ME . Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes 2013; 62: 1783–1790.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Symonds ME, Henderson K, Elvidge L, Bosman C, Sharkey D, Perkins AC et al. Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr 2012; 161: 892–898.

    PubMed  Google Scholar 

  69. Symonds ME, Pope M, Budge H . Adipose tissue development during early life: novel insights into energy balance from small and large mammals. Proc Nutr Soc 2012; 71: 363–370.

    CAS  PubMed  Google Scholar 

  70. Symonds ME, Budge H . How promising is thermal imaging in the quest to combat obesity? Imag Med 2012; 4: 589–591.

    CAS  Google Scholar 

  71. Flegal KM, Carroll MD, Kit BK, Ogden CL . Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012; 307: 491–497.

    PubMed  Google Scholar 

  72. Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines In: Rasmussen KM, Yaktine AL (eds). Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. National Academies Press: Washington, DC, USA, 2009.

  73. Catalano PM . Management of obesity in pregnancy. Obstet Gynecol 2007; 109: 419–433.

    PubMed  Google Scholar 

  74. Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 2009; 90: 1303–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Catalano PM, Tyzbir ED, Allen SR, McBean JH, McAuliffe TL . Evaluation of fetal growth by estimation of neonatal body composition. Obstet Gynecol 1992; 79: 46–50.

    CAS  PubMed  Google Scholar 

  76. Waters TP, Huston-Presley L, Catalano PM . Neonatal body composition according to the revised institute of medicine recommendations for maternal weight gain. J Clin Endocrinol Metab 2012; 97: 3648–3654.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Catalano PM, McIntyre HD, Cruickshank JK, McCance DR, Dyer AR, Metzger BE et al. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diab Care 2012; 35: 780–786.

    CAS  Google Scholar 

  78. Catalano PM, Ehrenberg HM . The short- and long-term implications of maternal obesity on the mother and her offspring. Bjog 2006; 113: 1126–1133.

    CAS  PubMed  Google Scholar 

  79. Catalano PM, Hauguel de Mouzon S . Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 2011; 204: 479–487.

    PubMed  PubMed Central  Google Scholar 

  80. Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002; 51: 2207–2213.

    CAS  PubMed  Google Scholar 

  81. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008; 29: 274–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Resi V, Basu S, Haghiac M, Presley L, Minium J, Kaufman B et al. Molecular inflammation and adipose tissue matrix remodeling precede physiological adaptations to pregnancy. Am J Physiol Endocrinol Metab 2012; 303: E832–E840.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gluckman PD, Hanson MA, Beedle AS, Spencer HG . Predictive adaptive responses in perspective. Trends Endocrinol Metab 2008; 19: 109–110; author reply 112.

    CAS  PubMed  Google Scholar 

  84. Gluckman PD, Hanson MA, Pinal C . The developmental origins of adult disease. Matern Child Nutr 2005; 1: 130–141.

    PubMed  PubMed Central  Google Scholar 

  85. Aiken CE, Ozanne SE . Transgenerational developmental programming. Hum Reprod Update 2014; 20: 63–75.

    PubMed  Google Scholar 

  86. Gray C, Li M, Reynolds CM, Vickers MH . Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy. PLoS One 2013; 8: e53505.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reynolds CM, Li M, Gray C, Vickers MH . Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology 2013; 154: 2676–2686.

    CAS  PubMed  Google Scholar 

  88. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216.

    CAS  PubMed  Google Scholar 

  89. Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA . Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia 2011; 54: 2606–2614.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bai S, Briggs D, Vickers MH . Increased systolic blood pressure in rat offspring following a maternal low-protein diet is normalized by maternal dietary choline supplementation. J Dev Origins Health Dis 2012; 3: 1–8.

    Google Scholar 

  91. Brawley L, Torrens C, Anthony FW, Itoh S, Wheeler T, Jackson AA et al. Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy. J Physiol 2004; 554: 497–504.

    CAS  PubMed  Google Scholar 

  92. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC . Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; 135: 1382–1386.

    CAS  PubMed  Google Scholar 

  93. Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA et al. Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension 2006; 47: 982–987.

    CAS  PubMed  Google Scholar 

  94. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E . Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 2013; e-pub ahead of print 16 August 2013; doi:10.1038/ijo.2013.150

    PubMed  Google Scholar 

  95. Zambrano E, Martinez-Samayoa PM, Rodriguez-Gonzalez GL, Nathanielsz PW . Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 2010; 588: 1791–1799.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology 2008; 149: 1906–1913.

    CAS  PubMed  Google Scholar 

  97. Lederman SA, Paxton A, Heymsfield SB, Wang J, Thornton J, Pierson RN Jr Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol 1997; 90: 483–488.

    CAS  PubMed  Google Scholar 

  98. Centers for Disease Control and Prevention. Pregnancy Nutrition Surveillance 2011 Report. Department of Health and Human Services: Atlanta, 2012.

  99. Ehrenberg HM, Huston-Presley L, Catalano PM . The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. Am J Obstet Gynecol 2003; 189: 944–948.

    PubMed  Google Scholar 

  100. Sohlstrom A, Wahlund LO, Forsum E . Total body fat and its distribution during human reproduction as assessed by magnetic resonance imaging. Basic Life Sci 1993; 60: 181–184.

    CAS  PubMed  Google Scholar 

  101. Kinoshita T, Itoh M . Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ratio of visceral fat to subcutaneous fat in the abdomen. Gynecol Obstet Invest 2006; 61: 115–118.

    PubMed  Google Scholar 

  102. Gilmore LA, Butte NF, Ravussin E, Han H, Redman LM . Energy intake, not an adaptation in energy expenditure, is a strong determinant of gestational weight gain (Abstract). Obesity 2013; The 31st Annual Scientific Meeting of The Obesity Society: S72.

    Google Scholar 

  103. Kinnunen TI, Luoto R, Gissler M, Hemminki E . Pregnancy weight gain from 1960s to 2000 in Finland. Int J Obes Relat Metab Disord 2003; 27: 1572–1577.

    CAS  PubMed  Google Scholar 

  104. Beyerlein A, Lack N, von Kries R . Within-population average ranges compared with Institute of Medicine recommendations for gestational weight gain. Obstet Gynecol 2010; 116: 1111–1118.

    PubMed  Google Scholar 

  105. Frederick IO, Williams MA, Sales AE, Martin DP, Killien M . Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight. Matern Child Health J 2008; 12: 557–567.

    PubMed  Google Scholar 

  106. Ludwig DS, Rouse HL, Currie J . Pregnancy weight gain and childhood body weight: a within-family comparison. PLoS Med 2013; 10: e1001521.

    PubMed  PubMed Central  Google Scholar 

  107. Whitaker RC . Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 2004; 114: e29–e36.

    PubMed  Google Scholar 

  108. Crozier SR, Inskip HM, Godfrey KM, Cooper C, Harvey NC, Cole ZA et al. Weight gain in pregnancy and childhood body composition: findings from the Southampton Women’s Survey. Am J Clin Nutr 2010; 91: 1745–1751.

    CAS  PubMed  Google Scholar 

  109. Fraser A, Tilling K, Macdonald-Wallis C, Sattar N, Brion MJ, Benfield L et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 2010; 121: 2557–2564.

    PubMed  PubMed Central  Google Scholar 

  110. Hinkle SN, Sharma AJ, Swan DW, Schieve LA, Ramakrishnan U, Stein AD . Excess gestational weight gain is associated with child adiposity among mothers with normal and overweight prepregnancy weight status. J Nutr 2012; 142: 1851–1858.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Retnakaran R, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B et al. Effect of maternal weight, adipokines, glucose intolerance and lipids on infant birth weight among women without gestational diabetes mellitus. Cmaj 2012; 184: 1353–1360.

    PubMed  PubMed Central  Google Scholar 

  112. Reynolds RM, Osmond C, Phillips DI, Godfrey KM . Maternal BMI, parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood. J Clin Endocrinol Metab 2010; 95: 5365–5369.

    CAS  PubMed  Google Scholar 

  113. American Academy of Pediatrics Section on Breastfeeding. Policy Statement: Breastfeeding and the use of human milk. Pediatrics 2012; 129: e827–e841.

    Google Scholar 

  114. Horta BL, Bahl R, Martines JC, Victoria CG Evidence for the long-term effects of breastfeeding: Systematic reviews and meta-analyses http://www.who.int Published 2007. (accessed 18 December 2013).

  115. Weng SF, Redsell SA, Swift JA, Yang M, Glazebrook CP . Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child 2012; 97: 1019–1026.

    PubMed  Google Scholar 

  116. Li C, Kaur H, Choi WS, Huang TT, Lee RE, Ahluwalia JS . Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res 2005; 13: 362–371.

    PubMed  Google Scholar 

  117. Bogen DL, Hanusa BH, Whitaker RC . The effect of breast-feeding with and without formula use on the risk of obesity at 4 years of age. Obes Res 2004; 12: 1527–1535.

    PubMed  Google Scholar 

  118. Ballard O, Morrow AL . Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013; 60: 49–74.

    PubMed  PubMed Central  Google Scholar 

  119. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 2009; 89: 1836–1845.

    CAS  PubMed  Google Scholar 

  120. Oddy WH . Infant feeding and obesity risk in the child. Breastfeed Rev 2012; 20: 7–12.

    PubMed  Google Scholar 

  121. Li R, Magadia J, Fein SB, Grummer-Strawn LM . Risk of bottle-feeding for rapid weight gain during the first year of life. Arch Pediatr Adolesc Med 2012; 166: 431–436.

    PubMed  Google Scholar 

  122. Li R, Fein SB, Grummer-Strawn LM . Association of breastfeeding intensity and bottle-emptying behaviors at early infancy with infants’ risk for excess weight at late infancy. Pediatrics 2008; 122: S77–S84.

    PubMed  Google Scholar 

  123. Reynolds KD, Spruijt-Metz D . Translational research in childhood obesity prevention. Eval Health Prof 2006; 29: 219–245.

    PubMed  Google Scholar 

  124. Rohrbach LA, Grana R, Sussman S, Valente TW . Type II translation: transporting prevention interventions from research to real-world settings. Eval Health Prof 2006; 29: 302–333.

    PubMed  Google Scholar 

  125. Sussman S, Valente TW, Rohrbach LA, Skara S, Pentz MA . Translation in the health professions: converting science into action. Eval Health Prof 2006; 29: 7–32.

    PubMed  Google Scholar 

  126. Whitlock EP, O’Connor EA, Williams SB, Beil TL, Lutz KW . Effectiveness of weight management interventions in children: a targeted systematic review for the USPSTF. Pediatrics 2010; 125: e396–e418.

    PubMed  Google Scholar 

  127. Pratt CA, Stevens J, Daniels S . Childhood obesity prevention and treatment: recommendations for future research. Am J Prev Med 2008; 35: 249–252.

    PubMed  PubMed Central  Google Scholar 

  128. Sargent GM, Pilotto LS, Baur LA . Components of primary care interventions to treat childhood overweight and obesity: a systematic review of effect. Obes Rev 2011; 12: e219–e235.

    CAS  PubMed  Google Scholar 

  129. Epstein LH, Paluch RA, Roemmich JN, Beecher MD . Family-based obesity treatment, then and now: twenty-five years of pediatric obesity treatment. Health Psychol 2007; 26: 381–391.

    PubMed  PubMed Central  Google Scholar 

  130. Ford AL, Hunt LP, Cooper A, Shield JP . What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Arch Dis Child 2010; 95: 256–261.

    PubMed  Google Scholar 

  131. Kolsgaard ML, Joner G, Brunborg C, Anderssen SA, Tonstad S, Andersen LF . Correction: ‘reduction in BMI z-score and improvement in cardiometabolic risk factors in obese children and adolescents. The Oslo adiposity intervention study—a hospital/public health nurse combined treatment.’. BMC Pediatr 2012; 12: 77.

    PubMed  PubMed Central  Google Scholar 

  132. Boutelle KN, Norman GJ, Rock CL, Rhee KE, Crow SJ . Guided self-help for the treatment of pediatric obesity. Pediatrics 2013; 131: e1435–e1442.

    PubMed  PubMed Central  Google Scholar 

  133. Janicke DM, Sallinen BJ, Perri MG, Lutes LD, Huerta M, Silverstein JH et al. Comparison of parent-only vs family-based interventions for overweight children in underserved rural settings: outcomes from project STORY. Arch Pediatr Adolesc Med 2008; 162: 1119–1125.

    PubMed  PubMed Central  Google Scholar 

  134. Raynor HA, Osterholt KM, Hart CN, Jelalian E, Vivier P, Wing RR . Efficacy of U.S. paediatric obesity primary care guidelines: two randomized trials. Pediatr Obes 2012; 7: 28–38.

    CAS  PubMed  Google Scholar 

  135. Taveras EM, Gortmaker SL, Hohman KH, Horan CM, Kleinman KP, Mitchell K et al. Randomized controlled trial to improve primary care to prevent and manage childhood obesity: the High Five for Kids study. Arch Pediatr Adolesc Med 2011; 165: 714–722.

    PubMed  Google Scholar 

  136. Wilfley DE, Tibbs TL, Van Buren DJ, Reach KP, Walker MS, Epstein LH . Lifestyle interventions in the treatment of childhood overweight: a meta-analytic review of randomized controlled trials. Health Psychol 2007; 26: 521–532.

    PubMed  PubMed Central  Google Scholar 

  137. Goldschmidt AB, Wilfley DE, Paluch RA, Roemmich JN, Epstein LH . Indicated prevention of adult obesity: how much weight change is necessary for normalization of weight status in children? JAMA Pediatr 2013; 167: 21–26.

    PubMed  PubMed Central  Google Scholar 

  138. Wilfley DE, Kass AE, Kolko RP . Counseling and behavior change in pediatric obesity. Pediatr Clin North Am 2011; 58: 1403–1424 x.

    PubMed  PubMed Central  Google Scholar 

  139. McGovern L, Johnson JN, Paulo R, Hettinger A, Singhal V, Kamath C et al. Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab 2008; 93: 4600–4605.

    CAS  PubMed  Google Scholar 

  140. Ho M, Garnett SP, Baur L, Burrows T, Stewart L, Neve M et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics 2012; 130: e1647–e1671.

    PubMed  Google Scholar 

  141. Jelalian E, Lloyd-Richardson EE, Mehlenbeck RS, Hart CN, Flynn-O’Brien K, Kaplan J et al. Behavioral weight control treatment with supervised exercise or peer-enhanced adventure for overweight adolescents. J Pediatr 2010; 157: 923–928 e921.

    PubMed  PubMed Central  Google Scholar 

  142. Kalarchian MA, Levine MD, Arslanian SA, Ewing LJ, Houck PR, Cheng Y et al. Family-based treatment of severe pediatric obesity: randomized, controlled trial. Pediatrics 2009; 124: 1060–1068.

    PubMed  Google Scholar 

  143. Savoye M, Shaw M, Dziura J, Tamborlane WV, Rose P, Guandalini C et al. Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA 2007; 297: 2697–2704.

    CAS  PubMed  Google Scholar 

  144. Tsiros MD, Sinn N, Coates AM, Howe PR, Buckley JD . Treatment of adolescent overweight and obesity. Eur J Pediatr 2008; 167: 9–16.

    PubMed  Google Scholar 

  145. Snethen JA, Broome ME, Cashin SE . Effective weight loss for overweight children: a meta-analysis of intervention studies. J Pediatr Nurs 2006; 21: 45–56.

    PubMed  Google Scholar 

  146. Stitzel KF . Position of the American Dietetic Association: the roles of registered dietitians and dietetic technicians, registered in health promotion and disease prevention. J Am Diet Assoc 2006; 106: 1875–1884.

    PubMed  Google Scholar 

  147. U.S. Preventive Services Task Force. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. Pediatrics 2010; 125: 361–367.

    Google Scholar 

  148. Wilfley DE, Stein RI, Saelens BE, Mockus DS, Matt GE, Hayden-Wade HA et al. Efficacy of maintenance treatment approaches for childhood overweight: a randomized controlled trial. JAMA 2007; 298: 1661–1673.

    CAS  PubMed  Google Scholar 

  149. Bouton ME . Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 2002; 52: 976–986.

    PubMed  Google Scholar 

  150. Wilfley DE, Van Buren DJ, Theim KR, Stein RI, Saelens BE, Ezzet F et al. The use of biosimulation in the design of a novel multilevel weight loss maintenance program for overweight children. Obesity (Silver Spring) 2010; 18 : S91–S98.

    Google Scholar 

  151. Best JR, Theim KR, Gredysa DM, Stein RI, Welch RR, Saelens BE et al. Behavioral economic predictors of overweight children’s weight loss. J Consult Clin Psychol 2012; 80: 1086–1096.

    PubMed  PubMed Central  Google Scholar 

  152. Boutelle KN, Cafri G, Crow SJ . Parent predictors of child weight change in family based behavioral obesity treatment. Obesity (Silver Spring) 2012; 20: 1539–1543.

    Google Scholar 

  153. Salvy SJ, Bowker JC, Germeroth L, Barkley J . Influence of peers and friends on overweight/obese youths’ physical activity. Exerc Sport Sci Rev 2012; 40: 127–132.

    PubMed  PubMed Central  Google Scholar 

  154. Epstein LH, Raja S, Daniel TO, Paluch RA, Wilfley DE, Saelens BE et al. The built environment moderates effects of family-based childhood obesity treatment over 2 years. Ann Behav Med 2012; 44: 248–258.

    PubMed  Google Scholar 

  155. Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M et al. Mobile health technology evaluation: the mHealth evidence workshop. Am J Prev Med 2013; 45: 228–236.

    PubMed  PubMed Central  Google Scholar 

  156. Patrick K, Griswold WG, Raab F, Intille SS . Health and the mobile phone. Am J Prev Med 2008; 35: 177–181.

    PubMed  PubMed Central  Google Scholar 

  157. Hekler EB, Klasnja P, Traver V, Hendriks M . Realizing effective behavioral management of health: the metamorphosis of behavioral science methods. IEEE Pulse 2013; 4: 29–34.

    PubMed  Google Scholar 

  158. Nilsen WJ, Pavel M . Moving behavioral theories into the 21st century: technological advancements for improving quality of life. IEEE Pulse 2013; 4: 25–28.

    PubMed  Google Scholar 

  159. Saranummi N, Spruijt-Metz D, Intille SS, Korhone I, Nilsen WJ, Pavel M . Moving the science of behavior change into the 21st century: novel solutions to prevent disease and promote health. IEEE Pulse 2013; 4: 22–24.

    PubMed  PubMed Central  Google Scholar 

  160. Petersen JE, Shunturov V, Janda K, Platt G, Weinberger K . Dormitory residents reduce electricity consumption when exposed to real-time visual feedback and incentives. Int J Sustainability Higher Educ 2007; 8: 16–33.

    Google Scholar 

  161. Kehrer P, Kelly K, Heffernan N . Does immediate feedback while doing homework improve learning? The Twenty-Sixth International FLAIRS Conference 2013. 22–24 May 2013; St. Pete Beach, FL, USA.

    Google Scholar 

  162. Peck SD, Raleigh DM, Stehle Werner JL . Improved class preparation and learning through immediate feedback in group testing for undergraduate nursing students. Nursing Edu Perspect 2013; 34: 400–404.

    Google Scholar 

  163. Collins LM, Murphy SA, Bierman KL . A conceptual framework for adaptive preventive interventions. Prev Sci 2004; 5: 185–196.

    PubMed  PubMed Central  Google Scholar 

  164. Newton KH, Wiltshire EJ, Elley CR . Pedometers and text messaging to increase physical activity: randomized controlled trial of adolescents with type 1 diabetes. Diabetes Care 2009; 32: 813–815.

    PubMed  PubMed Central  Google Scholar 

  165. Shapiro JR, Bauer S, Hamer RM, Kordy H, Ward D, Bulik CM . Use of text messaging for monitoring sugar-sweetened beverages, physical activity, and screen time in children: a pilot study. J Nutr Educ Behav 2008; 40: 385–391.

    PubMed  PubMed Central  Google Scholar 

  166. Woolford SJ, Clark SJ, Strecher VJ, Resnicow K . Tailored mobile phone text messages as an adjunct to obesity treatment for adolescents. J Telemed Telecare 2010; 16: 458–461.

    PubMed  PubMed Central  Google Scholar 

  167. de Niet J, Timman R, Bauer S, van den Akker E, de Klerk C, Kordy H et al. Short message service reduces dropout in childhood obesity treatment: a randomized controlled trial. Health Psychol 2012; 31: 797–805.

    PubMed  Google Scholar 

  168. O’Reilly GA, Spruijt-Metz D . Current mHealth technologies for physical activity assessment and promotion. Am J Prev Med 2013; 45: 501–507.

    PubMed  PubMed Central  Google Scholar 

  169. Emken BA, Li M, Thatte G, Lee S, Annavaram M, Mitra U et al. Recognition of physical activities in overweight Hispanic youth using KNOWME Networks. J Phys Act Health 2012; 9: 432–441.

    PubMed  Google Scholar 

  170. Li M, Rozgica V, Thatte G, Lee S, Emken A, Annavaram M et al. Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 369–380.

    PubMed  PubMed Central  Google Scholar 

  171. Mitra U, Emken BA, Sangwon L . KNOWME: a case study in wireless body area sensor network design. Communications Magazine 2012; 50: 116–125.

    Google Scholar 

  172. Tate EB, Spruijt-Metz D, O’Reilly G . MHealth approaches to child obesity prevention: successes, unique challenges, and next directions. Transl Behav Med 2013; 3: 406–415.

    PubMed  PubMed Central  Google Scholar 

  173. Toscos T, Faber A, An S, Gandhi MP . Chick clique: persuasive technology to motivate teenage girls to exercise. Proceedings of the 24th Annual ACM Conference on Human Factors in Computing Systems. ACM: New York, USA, 2006, pp 1873–1878.

    Google Scholar 

  174. Hope Lab. http://www.hopelab.org/innovative-solutions/gditty/ (accessed 3 January 2014).

  175. Staiano AE, Calvert SL . Exergames for physical education courses: physical, social, and cognitive benefits. Child Dev Perspect 2011; 5: 93–98.

    PubMed  PubMed Central  Google Scholar 

  176. Barnett A, Cerin E, Baranowski T . Active video games for youth: a systematic review. J Phys Act Health 2011; 8: 724–737.

    PubMed  Google Scholar 

  177. Biddiss E, Irwin J . Active video games to promote physical activity in children and youth: a systematic review. Arch Pediatr Adolesc Med 2010; 164: 664–672.

    PubMed  Google Scholar 

  178. Peng W, Lin JH, Crouse J . Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol Behav Soc Netw 2011; 14: 681–688.

    PubMed  Google Scholar 

  179. Staiano AE, Abraham AA, Calvert SL . Adolescent exergame play for weight loss and psychosocial improvement: a controlled physical activity intervention. Obesity (Silver Spring) 2013; 21: 598–601.

    Google Scholar 

  180. Staiano AE, Calvert SL . Wii tennis play for low-income African American adolescents’ energy expenditure. Cyberpsychology 2011; 5: pii 4.

    PubMed  PubMed Central  Google Scholar 

  181. Christison A, Khan HA . Exergaming for health: a community-based pediatric weight management program using active video gaming. Clin Pediatr (Phila) 2012; 51: 382–388.

    Google Scholar 

  182. Chinapaw MJ, Proper KI, Brug J, van Mechelen W, Singh AS . Relationship between young peoples’ sedentary behaviour and biomedical health indicators: a systematic review of prospective studies. Obes Rev 2011; 12: e621–e632.

    CAS  PubMed  Google Scholar 

  183. LeBlanc AG, Chaput JP, McFarlane A, Colley RC, Thivel D, Biddle SJ et al. Active video games and health indicators in children and youth: a systematic review. PLoS One 2013; 8: e65351.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Wagener TL, Fedele DA, Mignogna MR, Hester CN, Gillaspy SR . Psychological effects of dance-based group exergaming in obese adolescents. Pediatr Obes 2012; 7: e68–e74.

    CAS  PubMed  Google Scholar 

  185. Gao Z, Hannan P, Xiang P, Stodden DF, Valdez VE . Video game-based exercise, Latino children’s physical health, and academic achievement. Am J Prev Med 2013; 44: S240–S246.

    PubMed  Google Scholar 

  186. Baranowski T, Abdelsamad D, Baranowski J, O’Connor TM, Thompson D, Barnett A et al. Impact of an active video game on healthy children’s physical activity. Pediatrics 2012; 129: e636–e642.

    PubMed  PubMed Central  Google Scholar 

  187. Madsen KA, Yen S, Wlasiuk L, Newman TB, Lustig R . Feasibility of a dance videogame to promote weight loss among overweight children and adolescents. Arch Pediatr Adolesc Med 2007; 161: 105–107.

    PubMed  Google Scholar 

  188. Maloney AE, Bethea TC, Kelsey KS, Marks JT, Paez S, Rosenberg AM et al. A pilot of a video game (DDR) to promote physical activity and decrease sedentary screen time. Obesity (Silver Spring) 2008; 16: 2074–2080.

    Google Scholar 

  189. Maddison R, Foley L, Ni Mhurchu C, Jiang Y, Jull A, Prapavessis H et al. Effects of active video games on body composition: a randomized controlled trial. Am J Clin Nutr 2011; 94: 156–163.

    CAS  PubMed  Google Scholar 

  190. Murphy EC, Carson L, Neal W, Baylis C, Donley D, Yeater R . Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children. Int J Pediatr Obes 2009; 4: 205–214.

    PubMed  Google Scholar 

  191. Barlow SE . Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 2007; 120: S164–S192.

    PubMed  Google Scholar 

  192. Barkin SL, Finch SA, Ip EH, Scheindlin B, Craig JA, Steffes J et al. Is office-based counseling about media use, timeouts, and firearm storage effective? Results from a cluster-randomized, controlled trial. Pediatrics 2008; 122: e15–e25.

    PubMed  Google Scholar 

  193. Wake M, Baur LA, Gerner B, Gibbons K, Gold L, Gunn J et al. Outcomes and costs of primary care surveillance and intervention for overweight or obese children: the LEAP 2 randomised controlled trial. BMJ 2009; 339: b3308.

    PubMed  PubMed Central  Google Scholar 

  194. Resnicow K, McMaster F, Woolford S, Slora E, Bocian A, Harris D et al. Study design and baseline description of the BMI2 trial: reducing paediatric obesity in primary care practices. Pediatr Obes 2012; 7: 3–15.

    CAS  PubMed  Google Scholar 

  195. Schwartz RP, Hamre R, Dietz WH, Wasserman RC, Slora EJ, Myers EF et al. Office-based motivational interviewing to prevent childhood obesity: a feasibility study. Arch Pediatr Adolesc Med 2007; 161: 495–501.

    PubMed  Google Scholar 

  196. Christie D, Hudson L, Mathiot A, Cole TJ, Karlsen S, Kessel A et al. Assessing the efficacy of the Healthy Eating and Lifestyle Programme (HELP) compared with enhanced standard care of the obese adolescent in the community: study protocol for a randomized controlled trial. Trials 2011; 12: 242.

    PubMed  PubMed Central  Google Scholar 

  197. Waters E, de Silva-Sanigorski A, Hall BJ, Brown T, Campbell KJ, Gao Y et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev 2011; (12): CD001871.

  198. Martin LA, Ariza AJ, Thomson JS, Binns HJ . Seconds for care: evaluation of five health supervision visit topics using a new method. J Pediatr 2008; 153: 706–711, 711 e701–702.

    PubMed  Google Scholar 

  199. Black JA, White B, Viner RM, Simmons RK . Bariatric surgery for obese children and adolescents: a systematic review and meta-analysis. Obes Rev 2013; 14: 634–644.

    CAS  PubMed  Google Scholar 

  200. Howden LM, Meyer JA Age and sex composition: 2010. 2010 Census Briefs. United States Census Bureau, 2011.

  201. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J . Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA 2005; 293: 2873–2883.

    CAS  PubMed  Google Scholar 

  202. Berkowitz RI, Wadden TA, Gehrman CA, Bishop-Gilyard CT, Moore RH, Womble LG et al. Meal replacements in the treatment of adolescent obesity: a randomized controlled trial. Obesity (Silver Spring) 2011; 19: 1193–1199.

    Google Scholar 

  203. Dooyema CA, Belay B, Foltz JL, Williams N, Blanck HM . The childhood obesity research demonstration project: a comprehensive community approach to reduce childhood obesity. Child Obes 2013; 9: 454–459.

    PubMed  Google Scholar 

  204. Fowler-Brown A, Kahwati LC . Prevention and treatment of overweight in children and adolescents. Am Fam Physician 2004; 69: 2591–2598.

    PubMed  Google Scholar 

  205. Oude Luttikhuis H, Baur L, Jansen H, Shrewsbury VA, O’Malley C, Stolk RP et al. Interventions for treating obesity in children. Cochrane Database Syst Rev 2009; CD001872.

  206. Spear BA, Barlow SE, Ervin C, Ludwig DS, Saelens BE, Schetzina KE et al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics 2007; 120: S254–S288.

    PubMed  Google Scholar 

  207. von Spranger J . Phentermine resinate in obesity. Clinical trial of Mirapront in adipose chldren. Munch Med Wochenschr 1965; 38: 1833–1834.

    Google Scholar 

  208. Andelman MB, Jones C, Nathan S . Treatment of obesity in underprivileged adolescents. Comparison of diethylpropion hydrochloride with placebo in a double-blind study. Clin Pediatr (Phila) 1967; 6: 327–330.

    CAS  Google Scholar 

  209. Dolecek R . Endocrine studies with mazindol in obese patients. Pharmatherapeutica 1980; 2: 309–316.

    CAS  PubMed  Google Scholar 

  210. Golebiowska M, Chlebna-Sokol D, Kobierska I, Konopinska A, Malek M, Mastalska A et al. [Clinical evaluation of Teronac (mazindol) in the treatment of obesity in children. Part II. Anorectic properties and side effects (author’s transl)]. Przegl Lek 1981; 38: 355–358.

    CAS  PubMed  Google Scholar 

  211. Golebiowska M, Chlebna-Sokol D, Mastalska A, Zwaigzne-Raczynska J . [The clinical evaluation of teronac (Mazindol) in the treatment of children with obesity. Part I. Effect of the drug on somatic patterns and exercise capacity (author’s transl)]. Przegl Lek 1981; 38: 311–314.

    CAS  PubMed  Google Scholar 

  212. Komorowski JM, Zwaigzne-Raczynska J, Owczarczyk I, Golebiowska M, Zarzycki J . [Effect of mazindol (teronac) on various hormonal indicators in children with simple obesity]. Pediatr Pol 1982; 57: 241–246.

    CAS  PubMed  Google Scholar 

  213. Samanin R, Garattini S . Neurochemical mechanism of action of anorectic drugs. Pharmacol Toxicol 1993; 73: 63–68.

    CAS  PubMed  Google Scholar 

  214. Lorber J . Obesity in childhood. A controlled trial of anorectic drugs. Arch Dis Child 1966; 41: 309–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Stewart DA, Bailey JD, Patell H . Tenuate dospan as an appetitie suppressant in the treatment of obese children. Appl Ther 1970; 12: 34–36.

    CAS  PubMed  Google Scholar 

  216. Martin CK, Redman LM, Zhang J, Sanchez M, Anderson CM, Smith SR et al. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J Clin Endocrinol Metab 2011; 96: 837–845.

    CAS  PubMed  Google Scholar 

  217. Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab 2011; 96: 3067–3077.

    CAS  PubMed  Google Scholar 

  218. O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring) 2012; 20: 1426–1436.

    Google Scholar 

  219. Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med 2010; 363: 245–256.

    CAS  PubMed  Google Scholar 

  220. Chan EW, He Y, Chui CS, Wong AY, Lau WC, Wong IC . Efficacy and safety of lorcaserin in obese adults: a meta-analysis of 1-year randomized controlled trials (RCTs) and narrative review on short-term RCTs. Obes Rev 2013; 14: 383–392.

    CAS  PubMed  Google Scholar 

  221. Eisai Inc. BELVIQ tablets, for oral use, 2013.

  222. Anderson JW, Greenway FL, Fujioka K, Gadde KM, McKenney J, O’Neil PM . Bupropion SR enhances weight loss: a 48-week double-blind, placebo- controlled trial. Obes Res 2002; 10: 633–641.

    CAS  PubMed  Google Scholar 

  223. Billes SK, Cowley MA . Inhibition of dopamine and norepinephrine reuptake produces additive effects on energy balance in lean and obese mice. Neuropsychopharmacology 2007; 32: 822–834.

    CAS  PubMed  Google Scholar 

  224. Becker EA, Shafer A, Anderson R . Weight changes in teens on psychotropic medication combinations at Austin State Hospital. Tex Med 2005; 101: 62–70.

    PubMed  Google Scholar 

  225. Glod CA, Lynch A, Flynn E, Berkowitz C, Baldessarini RJ . Open trial of bupropion SR in adolescent major depression. J Child Adolesc Psychiatr Nurs 2003; 16: 123–130.

    PubMed  Google Scholar 

  226. Rothman RB, Ayestas MA, Dersch CM, Baumann MH . Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 1999; 100: 869–875.

    CAS  PubMed  Google Scholar 

  227. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001; 39: 32–41.

    CAS  PubMed  Google Scholar 

  228. Bacon GE, Lowrey GH . A clinical trial of fenfluramine in obese children. Curr Ther Res Clin Exp 1967; 9: 626–630.

    CAS  PubMed  Google Scholar 

  229. Goldstein DJ, Rampey AH Jr, Enas GG, Potvin JH, Fludzinski LA, Levine LR . Fluoxetine: a randomized clinical trial in the treatment of obesity. Int J Obes Relat Metab Disord 1994; 18: 129–135.

    CAS  PubMed  Google Scholar 

  230. Malecka-Tendera E, Koehler B, Muchacka M, Wazowski R, Trzciakowska A . [Efficacy and safety of dexfenfluramine treatment in obese adolescents]. Pediatr Pol 1996; 71: 431–436.

    CAS  PubMed  Google Scholar 

  231. Pedrinola F, Cavaliere H, Lima N, Medeiros-Neto G . Is DL-fenfluramine a potentially helpful drug therapy in overweight adolescent subjects? Obes Res 1994; 2: 1–4.

    CAS  PubMed  Google Scholar 

  232. Pedrinola F, Sztejnsznajd C, Lima N, Halpern A, Medeiros-Neto G . The addition of dexfenfluramine to fluoxetine in the treatment of obesity: a randomized clinical trial. Obes Res 1996; 4: 549–554.

    CAS  PubMed  Google Scholar 

  233. Rauh JL, Lipp R . Chlorphentermine as an anorexigenic agent in adolescent obesity. Report of its efficacy in a double-blind study of 30 teen-agers. Clin Pediatr (Phila) 1968; 7: 138–140.

    CAS  Google Scholar 

  234. Glauser TA, Dlugos DJ, Dodson WE, Grinspan A, Wang S, Wu SC . Topiramate monotherapy in newly diagnosed epilepsy in children and adolescents. J Child Neurol 2007; 22: 693–699.

    PubMed  Google Scholar 

  235. Ferraro D, Di Trapani G . Topiramate in the prevention of pediatric migraine: literature review. J Headache Pain 2008; 9: 147–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Canitano R . Clinical experience with Topiramate to counteract neuroleptic induced weight gain in 10 individuals with autistic spectrum disorders. Brain Dev 2005; 27: 228–232.

    PubMed  Google Scholar 

  237. Carter GT, Yudkowsky MP, Han JJ, McCrory MA . Topiramate for weight reduction in Duchenne muscular dystrophy. Muscle Nerve 2005; 31: 788–789.

    PubMed  Google Scholar 

  238. Lessig MC, Shapira NA, Murphy TK . Topiramate for reversing atypical antipsychotic weight gain. J Am Acad Child Adolesc Psychiatry 2001; 40: 1364.

    CAS  PubMed  Google Scholar 

  239. Pavuluri MN, Janicak PG, Carbray J . Topiramate plus risperidone for controlling weight gain and symptoms in preschool mania. J Child Adolesc Psychopharmacol 2002; 12: 271–273.

    PubMed  Google Scholar 

  240. Nathan PJ, O’Neill BV, Napolitano A, Bullmore ET . Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci Ther 2011; 17: 490–505.

    CAS  PubMed  Google Scholar 

  241. Fountain NB . A pregnant pause to consider teratogenicity of topiramate. Epilepsy Curr 2009; 9: 36–38.

    PubMed  Google Scholar 

  242. Roberts MD US Food and Drug Administration Endocrinologic and Metabolic Drugs Advisory Committee Clinical Briefing Document February 22, 2012: VIVUS, Inc. 2012.

  243. Allison DB, Gadde KM, Garvey WT, Peterson CA, Schwiers ML, Najarian T et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring) 2012; 20: 330–342.

    CAS  Google Scholar 

  244. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 1341–1352.

    CAS  PubMed  Google Scholar 

  245. Berkowitz RI, Fujioka K, Daniels SR, Hoppin AG, Owen S, Perry AC et al. Effects of sibutramine treatment in obese adolescents: a randomized trial. Ann Intern Med 2006; 145: 81–90.

    CAS  PubMed  Google Scholar 

  246. Berkowitz RI, Wadden TA, Tershakovec AM, Cronquist JL . Behavior therapy and sibutramine for the treatment of adolescent obesity: a randomized controlled trial. JAMA 2003; 289: 1805–1812.

    CAS  PubMed  Google Scholar 

  247. Budd GM, Hayman LL, Crump E, Pollydore C, Hawley KD, Cronquist JL et al. Weight loss in obese African American and Caucasian adolescents: secondary analysis of a randomized clinical trial of behavioral therapy plus sibutramine. J Cardiovasc Nurs 2007; 22: 288–296.

    PubMed  Google Scholar 

  248. Daniels SR, Long B, Crow S, Styne D, Sothern M, Vargas-Rodriguez I et al. Cardiovascular effects of sibutramine in the treatment of obese adolescents: results of a randomized, double-blind, placebo-controlled study. Pediatrics 2007; 120: e147–e157.

    PubMed  Google Scholar 

  249. Danielsson P, Janson A, Norgren S, Marcus C . Impact sibutramine therapy in children with hypothalamic obesity or obesity with aggravating syndromes. J Clin Endocrinol Metab 2007; 92: 4101–4106.

    CAS  PubMed  Google Scholar 

  250. Garcia-Morales LM, Berber A, Macias-Lara CC, Lucio-Ortiz C, Del-Rio-Navarro BE, Dorantes-Alvarez LM . Use of sibutramine in obese mexican adolescents: a 6-month, randomized, double-blind, placebo-controlled, parallel-group trial. Clin Ther 2006; 28: 770–782.

    CAS  PubMed  Google Scholar 

  251. Godoy-Matos A, Carraro L, Vieira A, Oliveira J, Guedes EP, Mattos L et al. Treatment of obese adolescents with sibutramine: a randomized, double-blind, controlled study. J Clin Endocrinol Metab 2005; 90: 1460–1465.

    CAS  PubMed  Google Scholar 

  252. Reisler G, Tauber T, Afriat R, Bortnik O, Goldman M . Sibutramine as an adjuvant therapy in adolescents suffering from morbid obesity. Isr Med Assoc J 2006; 8: 30–32.

    CAS  PubMed  Google Scholar 

  253. Van Mil EG, Westerterp KR, Kester AD, Delemarre-van de Waal HA, Gerver WJ, Saris WH . The effect of sibutramine on energy expenditure and body composition in obese adolescents. J Clin Endocrinol Metab 2007; 92: 1409–1414.

    CAS  PubMed  Google Scholar 

  254. Violante-Ortiz R, Del-Rio-Navarro BE, Lara-Esqueda A, Perez P, Fanghanel G, Madero A et al. Use of sibutramine in obese Hispanic adolescents. Adv Ther 2005; 22: 642–649.

    CAS  PubMed  Google Scholar 

  255. Dunican KC, Desilets AR, Montalbano JK . Pharmacotherapeutic options for overweight adolescents. Ann Pharmacother 2007; 41: 1445–1455.

    CAS  PubMed  Google Scholar 

  256. Wald AB, Uli NK . Pharmacotherapy in pediatric obesity: current agents and future directions. Rev Endocr Metab Disord 2009; 10: 205–214.

    CAS  PubMed  Google Scholar 

  257. Burmeister MA, Ayala J, Drucker DJ, Ayala JE . Central glucagon-like peptide 1 receptor-induced anorexia requires glucose metabolism-mediated suppression of AMPK and is impaired by central fructose. Am J Physiol Endocrinol Metab 2013; 304: E677–E685.

    CAS  PubMed  Google Scholar 

  258. Kelly AS, Metzig AM, Rudser KD, Fitch AK, Fox CK, Nathan BM et al. Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity (Silver Spring) 2012; 20: 364–370.

    CAS  Google Scholar 

  259. Kelly AS, Rudser KD, Nathan BM, Fox CK, Metzig AM, Coombes BJ et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. JAMA Pediatr 2013; 167: 355–360.

    PubMed  PubMed Central  Google Scholar 

  260. Maahs D, de Serna DG, Kolotkin RL, Ralston S, Sandate J, Qualls C et al. Randomized, double-blind, placebo-controlled trial of orlistat for weight loss in adolescents. Endocr Pract 2006; 12: 18–28.

    PubMed  Google Scholar 

  261. Mathis LL Orlistat Update. 2010; http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM205380.pdf (accessed 05 November 2013).

  262. McDuffie JR, Calis KA, Uwaifo GI, Sebring NG, Fallon EM, Frazer TE et al. Efficacy of orlistat as an adjunct to behavioral treatment in overweight African American and Caucasian adolescents with obesity-related co-morbid conditions. J Pediatr Endocrinol Metab 2004; 17: 307–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. McDuffie JR, Calis KA, Uwaifo GI, Sebring NG, Fallon EM, Hubbard VS et al. Three-month tolerability of orlistat in adolescents with obesity-related comorbid conditions. Obes Res 2002; 10: 642–650.

    CAS  PubMed  Google Scholar 

  264. Norgren S, Danielsson P, Jurold R, Lotborn M, Marcus C . Orlistat treatment in obese prepubertal children: a pilot study. Acta Paediatr 2003; 92: 666–670.

    CAS  PubMed  Google Scholar 

  265. Ozkan B, Bereket A, Turan S, Keskin S . Addition of orlistat to conventional treatment in adolescents with severe obesity. Eur J Pediatr 2004; 163: 738–741.

    PubMed  Google Scholar 

  266. Zhi J, Moore R, Kanitra L . The effect of short-term (21-day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J Am Coll Nutr 2003; 22: 357–362.

    CAS  PubMed  Google Scholar 

  267. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA . Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy 2002; 22: 814–822.

    CAS  PubMed  Google Scholar 

  268. Hundal RS, Inzucchi SE . Metformin: new understandings, new uses. Drugs 2003; 63: 1879–1894.

    CAS  PubMed  Google Scholar 

  269. Mehnert H . Metformin, the rebirth of a biguanide: mechanism of action and place in the prevention and treatment of insulin resistance. Exp Clin Endocrinol Diabetes 2001; 109: S259–S264.

    CAS  PubMed  Google Scholar 

  270. Bestermann W, Houston MC, Basile J, Egan B, Ferrario CM, Lackland D et al. Addressing the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome in the southeastern United States, part II: treatment recommendations for management of the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome. Am J Med Sci 2005; 329: 292–305.

    PubMed  Google Scholar 

  271. Allen HF, Mazzoni C, Heptulla RA, Murray MA, Miller N, Koenigs L et al. Randomized controlled trial evaluating response to metformin versus standard therapy in the treatment of adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 2005; 18: 761–768.

    CAS  PubMed  Google Scholar 

  272. Arslanian SA, Lewy V, Danadian K, Saad R . Metformin therapy in obese adolescents with polycystic ovary syndrome and impaired glucose tolerance: amelioration of exaggerated adrenal response to adrenocorticotropin with reduction of insulinemia/insulin resistance. J Clin Endocrinol Metab 2002; 87: 1555–1559.

    CAS  PubMed  Google Scholar 

  273. Atabek ME, Pirgon O . Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab 2008; 21: 339–348.

    CAS  PubMed  Google Scholar 

  274. Bjorkhem-Bergman L, Asplund AB, Lindh JD . Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: a systematic review and meta-analysis. J Psychopharmacol 2011; 25: 299–305.

    PubMed  Google Scholar 

  275. Bridger T, MacDonald S, Baltzer F, Rodd C . Randomized placebo-controlled trial of metformin for adolescents with polycystic ovary syndrome. Arch Pediatr Adolesc Med 2006; 160: 241–246.

    PubMed  Google Scholar 

  276. Clarson CL, Mahmud FH, Baker JE, Clark HE, McKay WM, Schauteet VD et al. Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance. Endocrine 2009; 36: 141–146.

    CAS  PubMed  Google Scholar 

  277. Freemark M, Bursey D . The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 2001; 107: E55.

    CAS  PubMed  Google Scholar 

  278. Fu JF, Liang L, Zou CC, Hong F, Wang CL, Wang XM et al. Prevalence of the metabolic syndrome in Zhejiang Chinese obese children and adolescents and the effect of metformin combined with lifestyle intervention. Int J Obes Relat Metab Disord 2007; 31: 15–22.

    CAS  Google Scholar 

  279. Hoeger K, Davidson K, Kochman L, Cherry T, Kopin L, Guzick DS . The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. J Clin Endocrinol Metab 2008; 93: 4299–4306.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Ibanez L, de Zegher F . Ethinylestradiol-drospirenone, flutamide-metformin, or both for adolescents and women with hyperinsulinemic hyperandrogenism: opposite effects on adipocytokines and body adiposity. J Clin Endocrinol Metab 2004; 89: 1592–1597.

    CAS  PubMed  Google Scholar 

  281. Klein DJ, Cottingham EM, Sorter M, Barton BA, Morrison JA . A randomized, double-blind, placebo-controlled trial of metformin treatment of weight gain associated with initiation of atypical antipsychotic therapy in children and adolescents. Am J Psychiatry 2006; 163: 2072–2079.

    PubMed  Google Scholar 

  282. Legro RS . Impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women: do we need a new drug? J Clin Endocrinol Metab 2008; 93: 4218–4220.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Mastorakos G, Koliopoulos C, Deligeoroglou E, Diamanti-Kandarakis E, Creatsas G . Effects of two forms of combined oral contraceptives on carbohydrate metabolism in adolescents with polycystic ovary syndrome. Fertil Steril 2006; 85: 420–427.

    CAS  PubMed  Google Scholar 

  284. Rezvanian H, Hashemipour M, Kelishadi R, Tavakoli N, Poursafa P . A randomized, triple masked, placebo-controlled clinical trial for controlling childhood obesity. World J Pediatr 2010; 6: 317–322.

    CAS  PubMed  Google Scholar 

  285. Wiegand S, l’Allemand D, Hubel H, Krude H, Burmann M, Martus P et al. Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study. Eur J Endocrinol 2010; 163: 585–592.

    CAS  PubMed  Google Scholar 

  286. Wilson DM, Abrams SH, Aye T, Lee PD, Lenders C, Lustig RH et al. Metformin extended release treatment of adolescent obesity: a 48-week randomized, double-blind, placebo-controlled trial with 48-week follow-up. Arch Pediatr Adolesc Med 2010; 164: 116–123.

    PubMed  Google Scholar 

  287. Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG et al. Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes 2011; 60: 477–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Gambineri A, Patton L, De Iasio R, Cantelli B, Cognini GE, Filicori M et al. Efficacy of octreotide-LAR in dieting women with abdominal obesity and polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90: 3854–3862.

    CAS  PubMed  Google Scholar 

  289. De Waele K, Ishkanian SL, Bogarin R, Miranda CA, Ghatei MA, Bloom SR et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur J Endocrinol 2008; 159: 381–388.

    CAS  PubMed  Google Scholar 

  290. Haqq AM, Farooqi IS, O’Rahilly S, Stadler DD, Rosenfeld RG, Pratt KL et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab 2003; 88: 174–178.

    CAS  PubMed  Google Scholar 

  291. Lustig RH, Hinds PS, Ringwald-Smith K, Christensen RK, Kaste SC, Schreiber RE et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab 2003; 88: 2586–2592.

    CAS  PubMed  Google Scholar 

  292. Lustig RH, Rose SR, Burghen GA, Velasquez-Mieyer P, Broome DC, Smith K et al. Hypothalamic obesity caused by cranial insult in children: altered glucose and insulin dynamics and reversal by a somatostatin agonist. J Pediatr 1999; 135: 162–168.

    CAS  PubMed  Google Scholar 

  293. Dietz J, Schwartz J . Growth hormone alters lipolysis and hormone-sensitive lipase activity in 3T3-F442A adipocytes. Metabolism 1991; 40: 800–806.

    CAS  PubMed  Google Scholar 

  294. Eden Engstrom B, Burman P, Holdstock C, Karlsson FA . Effects of growth hormone (GH) on ghrelin, leptin, and adiponectin in GH-deficient patients. J Clin Endocrinol Metab 2003; 88: 5193–5198.

    PubMed  Google Scholar 

  295. Gregory JW, Greene SA, Jung RT, Scrimgeour CM, Rennie MJ . Changes in body composition and energy expenditure after six weeks’ growth hormone treatment. Arch Dis Child 1991; 66: 598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Hoos MB, Westerterp KR, Gerver WJ . Short-term effects of growth hormone on body composition as a predictor of growth. J Clin Endocrinol Metab 2003; 88: 2569–2572.

    CAS  PubMed  Google Scholar 

  297. Snel YE, Doerga ME, Brummer RJ, Zelissen PM, Zonderland ML, Koppeschaar HP . Resting metabolic rate, body composition and related hormonal parameters in growth hormone-deficient adults before and after growth hormone replacement therapy. Eur J Endocrinol 1995; 133: 445–450.

    CAS  PubMed  Google Scholar 

  298. Carrel AL, Myers SE, Whitman BY, Allen DB . Benefits of long-term GH therapy in Prader-Willi syndrome: a 4-year study. J Clin Endocrinol Metab 2002; 87: 1581–1585.

    CAS  PubMed  Google Scholar 

  299. Hoybye C, Hilding A, Jacobsson H, Thoren M . Growth hormone treatment improves body composition in adults with Prader-Willi syndrome. Clin Endocrinol (Oxf) 2003; 58: 653–661.

    CAS  Google Scholar 

  300. Myers SE, Davis A, Whitman BY, Santiago JV, Landt M . Leptin concentrations in Prader-Willi syndrome before and after growth hormone replacement. Clin Endocrinol (Oxf) 2000; 52: 101–105.

    CAS  Google Scholar 

  301. Shadid S, Jensen MD . Effects of growth hormone administration in human obesity. Obes Res 2003; 11: 170–175.

    CAS  PubMed  Google Scholar 

  302. Seo DC, Sa J . A meta-analysis of obesity interventions among U.S. minority children. J Adolesc Health 2010; 46: 309–323.

    PubMed  Google Scholar 

  303. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics 2011; S213–S256.

  304. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation 2013; 128: 1689–1712.

    PubMed  Google Scholar 

  305. Danielsson P, Kowalski J, Ekblom O, Marcus C . Response of severely obese children and adolescents to behavioral treatment. Arch Pediatr Adolescent Med 2012; 166: 1103–1108.

    Google Scholar 

  306. Savoye M, Nowicka P, Shaw M, Yu S, Dziura J, Chavent G et al. Long-term results of an obesity program in an ethnically diverse pediatric population. Pediatrics 2011; 127: 402–410.

    PubMed  PubMed Central  Google Scholar 

  307. Sjostrom L . Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes Relat Metab Disord 2008; 32: S93–S97.

    Google Scholar 

  308. Inge TH, Zeller MH, Lawson ML, Daniels SR . A critical appraisal of evidence supporting a bariatric surgical approach to weight management for adolescents. J Pediatr 2005; 147: 10–19.

    PubMed  Google Scholar 

  309. Inge TH, Zeller MH, Jenkins TM, Helmrath M, Brandt ML, Michalsky MP et al. Perioperative outcomes of adolescents undergoing bariatric surgery: the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study. JAMA Pediatr 2014; 168: 47–53.

    PubMed  PubMed Central  Google Scholar 

  310. Inge TH, Jenkins TM, Zeller M, Dolan L, Daniels SR, Garcia VF et al. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J Pediatr 2010; 156: 103–108 e101.

    PubMed  PubMed Central  Google Scholar 

  311. Olbers T, Gronowitz E, Werling M, Marlid S, Flodmark CE, Peltonen M et al. Two-year outcome of laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity: results from a Swedish Nationwide Study (AMOS). Int J Obes Relat Metab Disord 2012; 36: 1388–1395.

    CAS  Google Scholar 

  312. Kalra M, Mannaa M, Fitz K, Kumar S, Chakraborty R, Sheng X et al. Effect of surgical weight loss on sleep architecture in adolescents with severe obesity. Obes Surg 2008; 18: 675–679.

    CAS  PubMed  Google Scholar 

  313. Inge TH, Miyano G, Bean J, Helmrath M, Courcoulas A, Harmon CM et al. Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents. Pediatrics 2009; 123: 214–222.

    PubMed  Google Scholar 

  314. Zeller MH, Modi AC, Noll JG, Long JD, Inge TH . Psychosocial functioning improves following adolescent bariatric surgery. Obesity (Silver Spring) 2009; 17: 985–990.

    Google Scholar 

  315. Zeller MH, Reiter-Purtill J, Ratcliff MB, Inge TH, Noll JG . Two-year trends in psychosocial functioning after adolescent Roux-en-Y gastric bypass. Surg Obes Relat Dis 2011; 7: 727–732.

    PubMed  PubMed Central  Google Scholar 

  316. Miyano G, Jenkins TM, Xanthakos SA, Garcia VF, Inge TH . Perioperative outcome of laparoscopic Roux-en-Y gastric bypass: a children’s hospital experience. J Pediatr Surg 2013; 48: 2092–2098.

    PubMed  PubMed Central  Google Scholar 

  317. Michalsky M, Kramer RE, Fullmer MA, Polfuss M, Porter R, Ward-Begnoche W et al. Developing criteria for pediatric/adolescent bariatric surgery programs. Pediatrics 2011; 128: S65–S70.

    PubMed  Google Scholar 

  318. Pratt JS, Lenders CM, Dionne EA, Hoppin AG, Hsu GL, Inge TH et al. Best practice updates for pediatric/adolescent weight loss surgery. Obesity (Silver Spring) 2009; 17: 901–910.

    Google Scholar 

Download references

Acknowledgements

SB is supported in part by 1U18 DP00336l7-01 Systems Approach to Obesity Prevention in Underserved Children in Texas, Centers for Disease Control and Prevention and by NIH/NIDDK 5U01DK 061718 Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN). CB is funded, in part, by the John W Barton, Sr. Endowed Chair in Genetics and Nutrition. PMC is funded by NICHD HD22965-19 and the Clinical Research Unit of the CTSCUL1TR000439 from NCATS at Case Western Reserve University. THI is supported in part by grant UM1DK072493 from the National Institute of Diabetes and Digestive and Kidney Diseases. PTK is partially supported by the Marie Edana Corcoran Endowed Chair in Pediatric Obesity and Diabetes. DS-M is partly supported by National Center for Research Resources and the Office of Science Education of the National Institutes of Health through grant number R25 RR011113. HR has received research funding from Weight Watchers, International. LMR is supported by funding from the National Institutes of Health (U01DK094418, R01099175, R00HD0607662). AES is supported, in part, by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center. MV is supported in part by Gravida: National Centre for Growth and Development and The Marsden Fund of the Royal Society of New Zealand. DW is supported in part, by the Scott Rudolph University Endowed Professor in Psychiatry, Medicine, Pediatrics and Psychology. Her other support includes NIH grantsK24MH070446-09; R01HD036904-01A1; T32HL007456-30; P30DK056341 NORC, and her research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR000448 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH. JAY is supported by the Intramural Research Program of NICHD, NIH and is a Commissioned Officer in the US Public Health Service, Department of Health and Human Services. The opinions and assertions expressed herein are those of the authors and are not to be construed as reflecting the views of the US Public Health Service, the National Institutes of Health or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P T Katzmarzyk.

Ethics declarations

Competing interests

CB is a scientific advisor to Weight Watchers, Pathway Genomics and Nike SPARQ. THI receives research funding from Ethicon Endosurgery. DW serves as an advisor to Shire and United Health Group. JAY has received orlistat and matching placebo from Roche and betahistine and matching placebo and grant support from Obecure for prior studies. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katzmarzyk, P., Barlow, S., Bouchard, C. et al. An evolving scientific basis for the prevention and treatment of pediatric obesity. Int J Obes 38, 887–905 (2014). https://doi.org/10.1038/ijo.2014.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.49

Keywords

This article is cited by

Search

Quick links