Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trends in high-frequency climate variability in the twentieth century

Abstract

HIGH-FREQUENCY climate variability is a fundamental aspect of climate. Understanding climate change demands attention to changes in climate variability and extremes1, but knowledge of the recent behaviour of these variables has been limited by the unavailability of long-term high-resolution data. Climate simulations incorporating increased greenhouse-gas concentrations2-9 indicate that a warmer climate could result in a decrease in high-frequency temperature variability (analogous to the decrease in variability observed from the poles to the tropics, and from winter to summer10) and an increase in the proportion of precipitation occurring in extreme events. Here we analyse high-frequency temperature and precipitation data from hundreds of sites spread over Australia, China, the former Soviet Union and the United States over the past 30 to 80 years. Day-to-day temperature variability is seen to have decreased in the Northern Hemisphere, and-at least within the United States-the proportion of total precipitation contributed by extreme, one-day events has increased significantly. We find that although the notion of a recent increase in interannual temperature variability is supported by data from the past few decades11, the longer data records indicate that this trend is an aberration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, R. W. & Brown, B. G. Clim. Change 21, 289–302 (1992).

    Article  ADS  Google Scholar 

  2. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change. The IPCC Scientific Assessment (Cambridge Univ. Press, 1990).

  3. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) Climate Change. The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, 1992).

  4. Gordon, H. B., Whetton, P. H., Pittock, A. B., Fowler, A. M. & Haylock, M. R. Clim. Dyn. 8, 83–102 (1992).

    Article  Google Scholar 

  5. Parey, S. Direction des Etudes et Recherches (HE-33/94/008, Electricite de France, Chatou, France, 1994).

    Google Scholar 

  6. Mearns, L. O., Giorgi, F., McDaniel, L. & Shields, C. Clim. Dyn. 11, 193–209 (1995).

    Article  Google Scholar 

  7. Mearns, L. O., Giorgi, F., McDaniel, L. & Shields, C. Global planet. Change (in the press).

  8. Suppiah, R. Clim. Dyn. 10, 395–405 (1994).

    Article  Google Scholar 

  9. Fowler, A. M. & Hennessey, K. J. J. Natural Hazards (in the press).

  10. Karl, T. R., Williams, C. N. Jr, Young, P. J. & Wendland, W. M. J. Clim. appl. Met. 25, 145–160 (1986).

    Article  Google Scholar 

  11. Parker, D. E., Jones, P. D., Folland, C. K. & Bevan, A. J. geophys. Res. 99, 14373–143991 (1994).

    Article  ADS  Google Scholar 

  12. Karl, T. R., Williams, C. N. Jr, Quinlan, F. T. & Boden, T. A. Rep. ORNL/CDIAC-30, NDP-019/R1 (Dept. of Energy, Oak Ridge Nat. Lab., 1990).

  13. Karl, T. R. et al. Bull. Am. met. Soc. 74, 1007–1023 (1993).

    Article  Google Scholar 

  14. Baker, C. B., Quayle, R. G. & Wanlin, W. Atmos. Res. 237, 27–35 (1995).

    Article  Google Scholar 

  15. Plummer, N., Lin, Z. & Torok, S. Atmos. Res. 237, 79–86 (1995).

    Article  Google Scholar 

  16. Thomson, D. J. Science 268, 59–68 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Thom, H. Bull. Am. met. Soc. 32, 397 (1947).

    Google Scholar 

  18. Haggard, W. H., Bilton, T. H. & Crutcher, H. L. J. appl. Met. 12, 50–61 (1973).

    Article  Google Scholar 

  19. Bradley, R. S. et al. Science 237, 171–175 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Groisman, P. Y., Koknaeva, V. V., Belokrylova, T. A. & Karl, T. R. Bull. Am. met. Soc. 72, 1725–1733 (1991).

    Article  Google Scholar 

  21. Karl, T. R., Knight, R. W., Easterling, D. R. & Quayle, R. Q. Consequences 1, 2–12 (1995).

    Google Scholar 

  22. Landsberg, H. E. The Urban Climate 186–207 (Academic, London, 1981).

    Google Scholar 

  23. Suppiah, R. & Hennessey, K. J. Aust. Met. Mag. (in the press).

  24. Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control (Holden Day, 1976).

    MATH  Google Scholar 

  25. Katz, R. W. J. Atmos. Sci. 39, 1446–1455 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, T., Knight, R. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995). https://doi.org/10.1038/377217a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377217a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing