Skip to main content
Log in

Omenn Syndrome: A Disorder of Rag1 and Rag2 Genes

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

In vertebrates, generation of the T- and B-cell repertoire relies on genomic rearrangement of T-cell receptor and immunoglobulin gene coding segments. This process, known as V(D)J recombination, is initiated by the lymphoid specific proteins Rag1 and Rag2. Both in humans and in animal models, mutations that abrogate expression of either the Rag1 or Rag2 proteins result in severe combined immune deficiency with a complete lack of circulating T and B cells due to an early block in lymphoid development. We have recently shown that mutations that impair, but do not completely abolish the function of Rag1 and Rag2 in humans result in Omenn syndrome, an enigmatic form of combined immune deficiency characterized by oligoclonal, activated T lymphocytes with a skewed Th2 profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Agrawal A, Eastman Q, Schatz D: Transposition mediated by Rag1 and Rag2 and its implications for the evolution of the immune system. Nature 394:744–751, 1998

    Google Scholar 

  2. Hiom K, Melek M, Gellert M: Dna transposition by the Rag1 and Rag2 proteins: A possible source of oncogenic translocations. Cell 94:463–470, 1998

    Google Scholar 

  3. Tonegawa S: Somatic generation of antibody diversity. Nature 302:575–581, 1983

    Google Scholar 

  4. Lewis SM: The mechanism of V(D)J joining: Lessons from molecular, immunological and comparative analyses. Adv Immunol 56:27–150, 1994

    Google Scholar 

  5. Hesse JE, Lieber MR, Mizuuchi K, Gellert M: V(D)J recombination: A functional definition of the joining signals. Genes Dev 3:1053–1061, 1989

    Google Scholar 

  6. Ramsden DA, Baetz K, Wu GE: Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res 22:1785–1796, 1994

    Google Scholar 

  7. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA: Cleavage at a V(D)J recombination signal requires only Rag1 and Rag2 proteins and occurs in two steps. Cell 83:387–395, 1995

    Google Scholar 

  8. van Gent DC, McBlane JF, Ramsden DA, Sadofsky MJ, Hesse JE, Gellert M: Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934, 1995

    Google Scholar 

  9. Sawchuk DJ, Weis-Garcia F, Malik S, Besmer E, Bustin M, Nussenzweig MC, Cortes P: V(D)J recombination: modulation of Rag1 and Rag2 cleavage activity on 12/23 substrates by whole cell extract and DNA bending proteins. J Exp Med 185:2025–2032, 1997

    Google Scholar 

  10. van Gent D C, Hiom K, Paull TT, Gellert M: Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J 16:2665–2670, 1997

    Google Scholar 

  11. Besmer E, Mansilla-Soto J, Cassard S, Sawchuck DJ, Brown G, Sadofsky M, Lewis SM, Nussenzweig MC, Cortes P: Hairpin coding end opening is mediated by the recombination activating genes Rag1 and Rag2. Mol Cell 2:817–828. 1998

    Google Scholar 

  12. Landau NR, Schatz DG, Rosa M, Baltimore D: Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol 7:3237–3243, 1987

    Google Scholar 

  13. Jackson SP, Jeggo PA: DNA double strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20:412–415, 1995

    Google Scholar 

  14. Bogue M, Roth DB: Mechanism of V(D)J recombination. Curr Opin Immunol 8:175–180, 1996

    Google Scholar 

  15. Agrawal A, Schatz DG: Rag1 and Rag2 form a stable postcleavage complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53, 1997

    Google Scholar 

  16. Zhu C, Bogue MA, Lim DS, Hasty P, Roth DB: Ku86–deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86:379–390, 1996

    Google Scholar 

  17. Bogue MA, Wang C, Zhu C, Roth DB: V(D)J recombination in Ku86–deficient mice: Distinct effects on coding, signal and hybrid joint formation. Immunity 7:37–47, 1997

    Google Scholar 

  18. Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoap N, Davidson L, Cheng HL, Sekiguchi JM, Frank K, Stanhope-Baker P, Schliesel M, Roth DB, Alt FW: Growth retardation and leaky SCID phenotype of Ku70–deficient mice. Immunity 7:853–865, 1997

    Google Scholar 

  19. Taccioli GE, Amatucci AG, Gell D, Xiang X, Arzayus T, Pristley A, Jackson SP, Rothstein AM, Jeggo PA, Herrera VLM: Targeted disruption of the catalytic subunit of the Dna-Pk gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9:355–366, 1998

    Google Scholar 

  20. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver D, Alt FW: A targeted Dna-Pkes-null mutation reveals Dna-Pk-independent functions for Ku in V(D)J recombination. Immunity 9:367–376, 1998

    Google Scholar 

  21. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Liebet MR: Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495, 1997

    Google Scholar 

  22. Schatz DG, Oettinger MA, Baltimore D: The V(D)J recombination activating gene Rag1. Cell 59:1035–1048, 1989

    Google Scholar 

  23. Oettinger MA, Schatz DG, Gorka C, Baltimore D: Rag1 and Rag2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523, 1990

    Google Scholar 

  24. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: Rag1–deficient mice have no mature B and T lymphocytes. Cell 68:869–877, 1992

    Google Scholar 

  25. Shinkai Y, Rathbun G, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt F: Rag2–deficient mice lack mature lymphocytes owing to inability to initiate V(D) rearrangement. Cell 68:855–867, 1992

    Google Scholar 

  26. Oettinger MA, Stanger B, Schatz DG, Glaser T, Call K, Housman D, Baltimore D: The recombination activating genes, Rag1 and Rag2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 35:97–101, 1992

    Google Scholar 

  27. Bernstein RM, Schluter SF, Bernstein H, Marchalonis JJ: Primordial emergence of the recombination activating gene 1 (Rag1): Sequence of the complete shark gene indicates homology to microbial integrases. Proc. Natl. Acad. Sci. USA 93:9454–9459, 1996

    Google Scholar 

  28. Zarrin AA, Fong I, Malkin L, Marsden P, Berinstein NL: Cloning and characterization of the human recombination activating gene 1 (Rag1) and Rag2 promoter regions. J Immunol 159:4382–4394, 1997

    Google Scholar 

  29. Spanopoulou E, Cortes P, Huang E, Shih C, Silver D, Svec P, Baltimore D: Localization, interaction and RNA-binding properties of the V(D)J recombination activating proteins Rag1 and Rag2. Immunity 3:715–726, 1995

    Google Scholar 

  30. Mc Mahan CJ, Difilippantonio MJ, Rao N, Spanopoulou E, Schatz DG: A basic motif in the N-terminal region of Rag1 enhances V(D)J recombination activity. Mol Cell Biol 17:4544–4552, 1997

    Google Scholar 

  31. Roman CAJ, Cherry SR, Baltimore D: Complementation of V(D)J recombination deficiency in Rag1−/− B cells reveals a requirement for novel elements in the N-terminus of Rag1. Immunity 7:13–24, 1997

    Google Scholar 

  32. McMahan CJ, Sadofsky MJ, Schatz DG: Definition of a large region of Rag1 that is important for coimmunoprecipitation of Rag2. J Immunol 158:2202–2210, 1997

    Google Scholar 

  33. Cuomo CA, Kirch SA, Gyeris J, Brent R, Oettinger MA: Rch1, a protein that specifically interacts with the Rag1 recombination activating protein. Proc Natl Acad Sci USA 91:6156–6160, 1994

    Google Scholar 

  34. Sadofsky MJ, Hesse JE, McBlane JF, Gellert M: Expression and V(D)J recombination activity of mutated Rag1 proteins. Nucleic Acids Res 21:5644–5650, 1993

    Google Scholar 

  35. Spanopoulou E, Zaitseva F, Wang F-H, Santagata S, Baltimore D, Panayotou G: The homeodomain region of Rag1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276, 1996

    Google Scholar 

  36. Difilippantonio M, McMahan CJ, Eastman QM, Spanopoulou E, Schatz DG: Rag-1 mediates signal sequence recognition and recruitment of Rag-2 in V(D)J recombination. Cell 87:253–262, 1996

    Google Scholar 

  37. Hiom K, Gellert M: A stable Rag1–Rag2–DNA complex that is active in V(D)J cleavage. Cell 88:65–72, 1997

    Google Scholar 

  38. Desiderio S, Lin WC, Li Z: The cell cycle and V(D)J recombination. Curr Top Microbiol Immunol 217:45–59, 1996

    Google Scholar 

  39. Hikida M, Mori M, Takai T, Tomochika K, Hamatani K, Ohmori H: Reexpression of Rag1 and Rag2 genes in activated mature mouse B cells. Science 274:2092–2094, 1996

    Google Scholar 

  40. Han S, Zheng B, Schatz DG, Spanopoulou E, Kelsoe G: Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274:2094–2097, 1997

    Google Scholar 

  41. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, Friedrich W, Seger RA, Hansen-Hagge TE, Desiderio S, Lieber MR, Bartram CR: Rag mutations in human B cell-negative SCID. Science 274:97–99, 1996

    Google Scholar 

  42. Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F, Fischer A, de Villartay J-P: A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangemen ts defines a new DNA recombination/repair deficiency. J Exp Med 188:627–634, 1998

    Google Scholar 

  43. Cavazzana-Calvo M, Le Deist F, de Saint Basile G, Papadopoulo D, De Villartay JP, Fisher A: Increased radiosensitivity of granulocyte macrophage colony-forming units and skin fibroblasts in human autosomal recessive severe combined immunodeficiency. J Clin Invest 91:1214–1218, 1993

    Google Scholar 

  44. Blunt T, Finnie NJ, Taccioli GE, Smith GC.M, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, Jackson SP: Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the mur ine scid mutation. Cell 80:813–823, 1995

    Google Scholar 

  45. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA: Identification of nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 93:10285–10290, 1996

    Google Scholar 

  46. Danska JS, Holland DP, Mariathasa S, Williams, Guidos CJ: Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol 16:5507–5517, 1996

    Google Scholar 

  47. Araki R, Fujimori A, Hamatani K, Mita K, Saito T, Mori M, Fukumura R, Morimyo M, Muto M, Itoh M, Tatsumi K, Abe M: Non-sense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc Natl Acad Sci USA 94:2438–2443, 1997

    Google Scholar 

  48. Omenn GS: Familial reticuloendotheliosis with eosinophilia. N Engl J Med 273:427–432, 1965

    Google Scholar 

  49. Le Deist F, Fischer, Durandy A, Arnaud-Battandier F, Nezelof C, Hamet M, De Prost Y, Griscelli C: Déficit immunitaire mixte et grave avec hyperéosinophilie. Arch Fr Pediatr 42:11–16, 1985

    Google Scholar 

  50. Pollack MS, Kirkpatrick D, Kapoor N, Dupont B, O'Reilly RJ: Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med 307:662–666, 1982

    Google Scholar 

  51. Le Deist F, Raffoux C, Griscelli C, Fischer A: Graft vs graft reaction resulting in the elimination of maternal cells in a SCID patient with maternofetal GVHd after an HLA identical bone marrow transplantation. J Immunol 138:423–427, 1987

    Google Scholar 

  52. Ochs HD, Davis SD, Mickelson E, Lerner KG, Wedgwood RJ: Combined immunodeficiency and reticuloendothliosis with eosinophilia. J Pediatr 85:463–465, 1974

    Google Scholar 

  53. Brugnoni D, Airò P, Facchetti F, Blanzuoli L, Ugazio AG, Cattaneo R, Notarangelo LD: In vitro cell death of activated lymphocytes in Omenn's syndrome. Eur J Immunol 27:2765–2773, 1997

    Google Scholar 

  54. Martin JV, Willoughby PB, Giusti V, Price G, Cerezo L: The lymph node pathology of Omenn's syndrome. Am J Surg Pathol 19:1082–1087, 1995

    Google Scholar 

  55. Chilosi M, Pizzolo G, Facchetti F, Notarangelo LD, Romagnani S, Del Prete G, Almerigogna F, De Carli M: The pathology of Omenn's syndrome. Am J Surg Pathol 20:773–774, 1996

    Google Scholar 

  56. Schandené L, Ferster A, Mascart-Lemone F, Crusiaux A, Grard C, Marchant A, Lybin M, Velu T, Sariban E, Goldman M: T helper type 2–like cells and therapeutic effects of interferon-gamma in combined immunodeficiency with hypereosinophilia (Omenn's syndrome). Eur J Immunol 23:56–60, 1993

    Google Scholar 

  57. Wirt DP, Brooks EG, Vaidya S, Klimpel GR, Waldmann TA, Goldblum RM: Novel T-lymphocyte population in combined immunodeficiency with features of graft-versus-host disease. N Engl J Med 321:370–374, 1989

    Google Scholar 

  58. Chilosi M, Facchetti F, Notarangelo LD, Romagnani S, Del Prete G, Almerigogna F, De Carli M, Pizzolo G: CD30 cell expression and abnormal soluble CD30 serum accumulation in Omenn's syndrome: evidence for a T helper 2–mediated acondition. Eur J Immunol 26:329–334, 1996

    Google Scholar 

  59. Harville TO, Adams DM, Howard TA, Ware RE: Oligoclonal expansion of CD45R0+ T lymphocytes in Omenn syndrome. J Clin Immunol 17:322–332, 1997

    Google Scholar 

  60. Rieux-Laucat F, Bahadoran P, Brousse N, Selz F, Fischer A, Le Deist F, dE Villartay JP: Highly restricted human T cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in Omenn's syndrome. J. Clin Invest 102:312–321, 1998

    Google Scholar 

  61. Villa A, Santagata S, Bozzi F, Frattini A, Imberti L, Benerini Gatta L, Ochs HD, Schwarz K, Notarangelo LD, Vezzoni P, Spanopoulou E: Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93:885–896, 1998

    Google Scholar 

  62. Gomez L, Le Deist F, Blanche S, Cavazzana-Calvo M, Griscelli C, Fischer A: Treatment of Omenn syndrome by bone marrow transplantation. J Pediatr 127:76–81, 1995

    Google Scholar 

  63. de Saint-Basile G, Le Deist F, de Villartay JP, Cerf-Bensussan N, Journet O, Brousse N, Griscelli C, Fischer A: Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hypereosinophilia (Omenn's syndrome). J Clin Invest 87:1352–1359, 1991

    Google Scholar 

  64. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM: Development of TH1 CD4 + T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549, 1993

    Google Scholar 

  65. Hosken NA, Shibuya K, Heath AW, Murphy KM, O'Garra A: The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha and beta-transgenic model. J Exp Med 182:1579–1584, 1995

    Google Scholar 

  66. Kaplan MH, Sun Y-L, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4–deficient mice. Nature 382:174–177, 1996

    Google Scholar 

  67. Magram J, Connaughton SE, Warrier RR, Carvajal DM, Wu CY, Ferrante J, Stewart C, Sarmiento U, Faherty DA, Gately MK: IL-12–deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 5:471–481, 1996

    Google Scholar 

  68. Mattner F, Magram J, Ferrante J, Launois P, Di Padova K, Behin R, Gately MK, Louis JA, Alber G: Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559, 1996

    Google Scholar 

  69. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DAA, Doherty PC, Grosveld GC, Ihle JN: Requirement for Stat4 in interleukin-12–mediated responses of natural killer and T cells. Nature 382:171–174, 1996

    Google Scholar 

  70. Nadel B, Tang A, Escuro G, Lugo G, Feeney AJ: Sequence of the spacer in the recombination signal sequence affects V(D)J rearrangement frequency and correlates with nonrandom Vk usage in vivo. J Exp Med 187:1495–1503, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, A., Santagata, S., Bozzi, F. et al. Omenn Syndrome: A Disorder of Rag1 and Rag2 Genes. J Clin Immunol 19, 87–97 (1999). https://doi.org/10.1023/A:1020550432126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020550432126

Navigation