Skip to main content
Log in

Effect of Different Iodine Nutrition on Cerebellum Pcp-2 in Rat Offspring During Lactation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The thyroid functions of breastfed infants, as well as (indirectly) the development of their central nervous system, are dependent on the iodine status of the lactating mother. Purkinje cell protein-2 is a cell-specific marker of the cerebellum Purkinje cell and is a suitable indicator for observing the postnatal development of the cerebellum after birth. We measured the Purkinje cell protein-2 mRNA and protein levels in the rat cerebellum in the critical postnatal (14 days after birth) and maturation periods (28 days after birth) to determine the effect of different nutritional iodine levels on cerebellum growth in the offspring during lactation. We found that severe iodine deficiency resulted in thyroid dysfunction in lactating rats and their offspring on both 14 and 28 days, showing maternal total T4 16.7 ± 12.0 vs 36.4 ± 15.0, P < 0.05 (14 days) and 22.6 ± 18.7 vs 53.4 ± 9.4, P < 0.01 (28 days), and neonatal total T4 10.6 ± 2.3 vs 16.4 ± 4.7, P < 0.01(14 days) and 12.8 ± 2.9 vs 16.7 ± 3.4, P < 0.05 (28 days), respectively. The Purkinje cell protein-2 mRNA and its protein levels in offspring rats were significantly reduced that showed Purkinje cell protein-2 mRNA 1.12 ± 0.04 vs 2.25 ± 0.53, P < 0.05 (14 days) and 1.74 ± 0.94 vs 8.69 ± 2.71, P < 0.01 (28 days). However, mild iodine deficiency and excessive iodine maintained almost normal thyroid function in maternal and neonatal rats and normal Purkinje cell protein-2 mRNA and protein levels in offspring’s cerebellum. We conclude that severe iodine deficiency could significantly reduce Purkinje cell protein-2 mRNA and its protein levels, indicating that the cerebellum development was retarded, but mild iodine deficiency and excessive iodine could maintain them at an approximately normal level by the mother’s and offspring’s compensations, especially by the mother’s mammary glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burgi H (2010) Iodine excess. Best Pract Res Clin Endocrinol Metab 24:107–115

    Article  PubMed  Google Scholar 

  2. Laurberg P, Cerqueira C, Ovesen L et al (2010) Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab 24:13–27

    Article  PubMed  CAS  Google Scholar 

  3. Verheesen RH, Schweitzer CM (2008) Iodine deficiency, more than cretinism and goiter. Med Hypotheses 71:645–648

    Article  PubMed  CAS  Google Scholar 

  4. Chen ZP, Hetzel BS (2010) Cretinism revisited. Best Pract Res Clin Endocrinol Metab 24:39–50

    Article  PubMed  Google Scholar 

  5. Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30:376–408

    Article  PubMed  CAS  Google Scholar 

  6. Azizi F, Smyth P (2009) Breastfeeding and maternal and infant iodine nutrition. Clin Endocrinol (Oxf) 70:803–809

    Article  CAS  Google Scholar 

  7. Wang Y, Zhang Z, Ge P et al (2009) Iodine status and thyroid function of pregnant, lactating women and infants (0–1 year) residing in areas with an effective universal salt iodization program. Asia Pac J Clin Nutr 18:34–40

    PubMed  Google Scholar 

  8. Yan YQ, Chen ZP, Yang XM et al (2005) Attention to the hiding iodine deficiency in pregnant and lactating women after universal salt iodization: a multi-community study in China. J Endocrinol Invest 28:547–553

    PubMed  CAS  Google Scholar 

  9. Berbel P, Obregon MJ, Bernal J et al (2007) Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol Metab 18:338–343

    Article  PubMed  CAS  Google Scholar 

  10. Dorea JG (2002) Iodine nutrition and breast feeding. J Trace Elem Med Biol 16:207–220

    Article  PubMed  CAS  Google Scholar 

  11. Ares S, Quero J, Morreale de Escobar G (2005) Neonatal iodine deficiency: clinical aspects. J Pediatr Endocrinol Metab 18(Suppl 1):1257–1264

    Article  PubMed  CAS  Google Scholar 

  12. Zimmermann MB (2007) The impact of iodised salt or iodine supplements on iodine status during pregnancy, lactation and infancy. Public Health Nutr 10:1584–1595

    Article  PubMed  Google Scholar 

  13. Vandaele S, Nordquist DT, Feddersen RM et al (1991) Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev 5:1136–1148

    Article  PubMed  CAS  Google Scholar 

  14. Jooste PL, Strydom E (2010) Methods for determination of iodine in urine and salt. Best Pract Res Clin Endocrinol Metab 24:77–88

    Article  PubMed  CAS  Google Scholar 

  15. Ramakers C, Ruijter JM, Deprez RH et al (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  16. Wang K, Sun YN, Liu JY et al (2006) Type 1 iodothyronine deiodinase activity and mRNA expression in rat thyroid tissue with different iodine intakes. Chin Med J (Engl) 119:1899–1903

    CAS  Google Scholar 

  17. Wang K, Sun YN, Liu JY et al (2009) The impact of iodine excess on thyroid hormone biosynthesis and metabolism in rats. Biol Trace Elem Res 130:72–85

    Article  PubMed  CAS  Google Scholar 

  18. Chan S, Kilby MD (2000) Thyroid hormone and central nervous system development. J Endocrinol 165:1–8

    Article  PubMed  CAS  Google Scholar 

  19. Berbel P, Navarro D, Auso E et al (2010) Role of late maternal thyroid hormones in cerebral cortex development: an experimental model for human prematurity. Cereb Cortex 20:1462–1475

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Galan JR, Escobar del Rey F, Morreale de Escobar G et al (2004) Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat. Brain Res Dev Brain Res 153:109–114

    Article  PubMed  CAS  Google Scholar 

  21. Koibuchi N (2008) The role of thyroid hormone on cerebellar development. Cerebellum 7:530–533

    Article  PubMed  CAS  Google Scholar 

  22. Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794

    Article  PubMed  CAS  Google Scholar 

  23. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  24. Obregon MJ, Calvo RM, Del Rey FE et al (2007) Ontogenesis of thyroid function and interactions with maternal function. Endocr Dev 10:86–98

    Article  PubMed  CAS  Google Scholar 

  25. Redd KJ, Oberdick J, McCoy J et al (2002) Association and colocalization of G protein alpha subunits and Purkinje cell protein 2 (Pcp2) in mammalian cerebellum. J Neurosci Res 70:631–637

    Article  PubMed  CAS  Google Scholar 

  26. Serinagaoglu Y, Zhang R, Zhang Y et al (2007) A promoter element with enhancer properties, and the orphan nuclear receptor RORalpha, are required for Purkinje cell-specific expression of a Gi/o modulator. Mol Cell Neurosci 34:324–342

    Article  PubMed  CAS  Google Scholar 

  27. Sulaiman P, Fina M, Feddersen R et al (2010) Ret-PCP2 colocalizes with protein kinase C in a subset of primate ON cone bipolar cells. J Comp Neurol 518:1098–1112

    Article  PubMed  CAS  Google Scholar 

  28. Bansal R, Zoeller RT (2008) Polychlorinated biphenyls (Aroclor 1254) do not uniformly produce agonist actions on thyroid hormone responses in the developing rat brain. Endocrinology 149:4001–4008

    Article  PubMed  CAS  Google Scholar 

  29. Guan J, Luo Y, Denker BM (2005) Purkinje cell protein-2 (Pcp2) stimulates differentiation in PC12 cells by Gbetagamma-mediated activation of Ras and p38 MAPK. Biochem J 392:389–397

    Article  PubMed  CAS  Google Scholar 

  30. Simons MJ, Pellionisz AJ (2006) Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development. Cerebellum 5:27–35

    Article  PubMed  CAS  Google Scholar 

  31. Zou L, Hagen SG, Strait KA et al (1994) Identification of thyroid hormone response elements in rodent Pcp-2, a developmentally regulated gene of cerebellar Purkinje cells. J Biol Chem 269:13346–13352

    PubMed  CAS  Google Scholar 

  32. Manzano J, Morte B, Scanlan TS et al (2003) Differential effects of triiodothyronine and the thyroid hormone receptor beta-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 144:5480–5487

    Article  PubMed  CAS  Google Scholar 

  33. Anderson GW, Hagen SG, Larson RJ et al (1997) Purkinje cell protein-2 cis-elements mediate repression of T3-dependent transcriptional activation. Mol Cell Endocrinol 131:79–87

    Article  PubMed  CAS  Google Scholar 

  34. Anderson GW, Larson RJ, Oas DR et al (1998) Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J Biol Chem 273:16391–16399

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Nature Science Foundation of China (No. 30671816). The authors declare that there are no conflicts of interest that would prejudice the impartiality of this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qin Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Sun, Y.N., Li, Y.M. et al. Effect of Different Iodine Nutrition on Cerebellum Pcp-2 in Rat Offspring During Lactation. Biol Trace Elem Res 143, 1629–1639 (2011). https://doi.org/10.1007/s12011-011-8991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-8991-3

Keywords

Navigation