Skip to main content

Advertisement

Log in

Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Antimicrobial resistance patterns among the principal bacterial pathogens from infections of the respiratory tract, blood, skin and soft tissue, and urinary tract of pediatric patients from the USA, Canada, Germany, France, and Italy were studied using the The Surveillance Network (TSN) database. Among Streptococcus pneumoniae isolates from respiratory tract infections, the prevalence of high-level penicillin resistance (MIC≥2 μg/ml) ranged from 1.1 (Italy) to 36.2% (USA); erythromycin resistance was higher, ranging from 13.4 (Germany) to 63.8% (France). The prevalence of β-lactamase-positive Haemophilus influenzae among isolates from lower respiratory tract infections ranged from <10 (Italy and Germany) to 38.4% (USA). Among isolates from blood and skin and soft tissue infections, the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) ranged from 7.2% (Canada and Germany) to 27.3% (Italy). The prevalence of Escherichia coli and Klebsiella pneumoniae with putative extended-spectrum β-lactamases among isolates from blood, urinary tract, and skin and soft tissue infections ranged from 0 (Germany and France) to 29.6% (Italy). With the exception of pseudomonal infections or infections with MRSA, amoxicillin-clavulanate retained moderate activity, whilst ceftriaxone and cefepime were the most effective broad-spectrum injectable agents. Meropenem was the most effective agent against Pseudomonas aeruginosa with <5% resistance. Low levels of resistance, along with acceptable safety profiles and the availability of convenient oral formulations, continue to support the use of ceftriaxone, cefepime, amoxicillin-clavulanate, and meropenem as viable options for the treatment of infections in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kim Y-K, Pai H, Lee H-J, Park S-E, Choi E-H, Kim J, Kim J-H, Kim E-C (2002) Bloodstream infections by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 46:1481–1491

    Article  CAS  PubMed  Google Scholar 

  2. Bush K, Jacoby G (1997) Nomenclature of TEM β-lactamases. J Antimicrob Chemother 39:1–3

    Article  CAS  Google Scholar 

  3. Jacoby GA, Medeiros AA (1991) More extended-spectrum β-lactamases. Antimicrob Agents Chemother 35:1697–1704

    CAS  PubMed  Google Scholar 

  4. Pornull KJ, Goransson E, Rytting AS, Dornbusch K (1993) Extended-spectrum β-lactamases in Escherichia coli and Klebsiella spp. in European septicemia isolates. J Antimicrob Chemother 32:559–570

    CAS  PubMed  Google Scholar 

  5. Siu LK, Lu PL, Hsueh PR, Lin FM, Chang SC, Luh KT, Ho M, Lee CY (1999) Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric oncology ward: clinical features and identification of differential plasmids carrying both SHV-5 and TEM-1 genes. J Clin Microbiol 37:4020–4027

    CAS  PubMed  Google Scholar 

  6. Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, Bonomo RA, Rice LB, McCormack JG, Yu VL (2001) Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum β-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39:2206–2212

    Article  CAS  PubMed  Google Scholar 

  7. Sahm DF, Marsilio MK, Piazza G (1999) Antimicrobial resistance in key bloodstream bacterial isolates: electronic surveillance with The Surveillance Network database—USA. Clin Infect Dis 29:259–263

    CAS  PubMed  Google Scholar 

  8. National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial tests for bacteria that grow aerobically. Approved standard M7-A5. NCCLS, Wayne, PA

  9. Carret G, Cavallo JD, Chardon H, Chidiac C, Choutet P, Courvalin P, Dabernat H, Drugeon H, Dubreuil L, Goldstein F, Jarlier V, Leclercq R, Nicolas-Chanoine MH, Philippon A, Quentin-Noury C, Rouveix B, Sirot J, Soussy CJ: Comité de L’ Antibiogramme De La Societé Française de Microbiologie Communiqué 2000–2001 (2001) Société Française de Microbiologie. http://www.sfm.asso.fr/

  10. National Committee for Clinical Laboratory Standards (2002) Performance standards for antimicrobial susceptibility testing. Informational supplement M100-S12. NCCLS, Wayne, PA

  11. Hadziyannis E, Tuohy M, Thomas L, Procop GW, Washington JA, Hall GS (2000) Screening and confirmatory testing for extended-spectrum β-lactamases (ESBL) in Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates. Diagn Microbiol Infect Dis 36:113–117

    Article  CAS  PubMed  Google Scholar 

  12. Sahm DF, Jones ME, Hickey ML, Diakun DR, Mani SV, Thornsberry C (2000) Resistance surveillance of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated in Asia and Europe, 1997–1998. J Antimicrob Chemother 45:457–466

    Google Scholar 

  13. Felmingham D, Reinert RR, Hirakata Y, Rodloff A (2002) Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother 50(Suppl S1):25–37

    Article  CAS  Google Scholar 

  14. Bingen E, Fitoussi F, Doit C, Cohen R, Tanna A, George R, Loukil C, Brahimi N, Le Thomas I, Deforche D (2000) Resistance to macrolides in Streptococcus pyogenes in France in pediatric patients. Antimicrob Agents Chemother 44:1453–1457

    Article  CAS  PubMed  Google Scholar 

  15. Dowell SF, Butler JC, Giebink GS, Jacobs MR, Jernigan D, Musher DM, Rakowsky A, Schwartz B (1999) Acute otitis media: management and surveillance in an era of pneumococcal resistance—a report from the Drug-Resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 18:1–9

    Article  PubMed  Google Scholar 

  16. Felmingham D, Grüneberg RN (2000) The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 45:191–203

    Article  CAS  PubMed  Google Scholar 

  17. Hyde TB, Gay K, Stephens DS, Vugia DJ, Pass M, Johnson S, Barrett NL, Schaffner W, Cieslak PR, Maupin PS, Zell ER, Jorgensen JH, Facklam RR, Whitney CG (2001) Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA 286:1857–1862

    Article  PubMed  Google Scholar 

  18. Lynch JP III, Martinez FJ (2002) Clinical relevance of macrolide-resistant Streptococcus pneumoniae for community-acquired pneumonia. Clin Infect Dis 34(Suppl 1):S27–S46

    Article  PubMed  Google Scholar 

  19. Reinert RR, Lutticken R, Bryskier A, Al-Lahham A (2003) Macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes in the pediatric population in Germany during 2000–2001. Antimicrob Agents Chemother 47:489–493

    Article  CAS  PubMed  Google Scholar 

  20. Fluit AC, Wielders CL, Verhoef J, Schmitz FJ (2001) Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY study. J Clin Microbiol 39:3727–3732

    CAS  PubMed  Google Scholar 

  21. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M, the SENTRY Partcipants Group (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 15:S114–S132

    Article  Google Scholar 

  22. Jones ME, Mayfield DC, Thornsberry C, Karlowsky JA, Sahm DF, Peterson D (2002) Prevalence of oxacillin resistance in Staphylococcus aureus among inpatients and outpatients in the United States during 2000. Antimicrob Agents Chemother 46:3104–3105

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura MM, Rohling KL, Shashaty M, Lu H, Tang YW, Edwards KM (2002) Prevalence of methicillin-resistant Staphylococcus aureus nasal carriage in the community pediatric population. Pediatr Infect Dis J 21:917–922

    Article  PubMed  Google Scholar 

  24. Hussain FM, Boyle-Vavra S, Daum RS (2001) Community-acquired methicillin-resistant Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J 20:763–767

    Article  CAS  PubMed  Google Scholar 

  25. GlaxoSmithKline (2000) Augmentin prescribing information. GlaxoSmithKline, Brentford

  26. Roche Pharmaceuticals (2000) Rocephin package insert. Roche Pharmaceuticals, Basel

Download references

Acknowledgments

We thank F. Hoffmann-La Roche Ltd, Basel, Switzerland for financial support of this study. Additionally, we thank the many clinical microbiology laboratories around the world that contribute data to TSN Databases, that make such studies possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.E., Karlowsky, J.A., Draghi, D.C. et al. Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis 23, 445–455 (2004). https://doi.org/10.1007/s10096-004-1133-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-004-1133-5

Keywords

Navigation