Skip to main content
Log in

Vital biomechanics: Proposed general concepts for skeletal adaptations to mechanical usage

  • Editorial
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alexander RM (1984) Optimum strengths for bones liable to fatigue and accidental fracture. J Theor Biol 109:621–626

    Article  PubMed  CAS  Google Scholar 

  2. Brash JC (1934) Some problems in the growth and developmental mechanics of bone. Edinburgh Med J

  3. Cowin SC (1984) Mechanical modeling of the stress adaptation process in bone. Calcif Tissue Int (Suppl) 36:S98-S103

    Article  PubMed  Google Scholar 

  4. Currey JD (1984) The mechanical adaptations of bones. Princeton University Press, Princeton.

    Google Scholar 

  5. Dempster WT, Liddicoat RT (1952) Compact bone as an isotropic material. Am J Anat 91:331–362, 41:305–318, 363–387

    Article  PubMed  CAS  Google Scholar 

  6. Enlow DH (1963) Principles of bone remodeling. Charles C. Thomas, Springfield

    Google Scholar 

  7. Evans FG (1957) Stress and strain in bones. Charles C. Thomas, Springfield

    Google Scholar 

  8. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer-Verlag, Berlin

    Google Scholar 

  9. Putschar WGJ (1960) General pathology of the musculoskeletal system. In: Handbuch der Allgemeinen Pathologie, Springer-Verlag, Berlin

    Google Scholar 

  10. Rubin CT (1984) Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int 36:S11-S18

    Article  PubMed  Google Scholar 

  11. Weinmann JP, Sicher H (1955) Bone and bones, 2nd ed. CV Mosby, St. Louis

    Google Scholar 

  12. Bouvier M (1985) Application of in vivo bone strain measurement techniques to problems of skeletal adaptations. Yearbook Phys Anthrop, 237–248

  13. Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int (suppl) 36:S56-S61

    Article  PubMed  Google Scholar 

  14. Reilly DT, Burstein AM (1974) The mechanical properties of cortical bone. J Bone Joint Surg 56A:1001–1022

    PubMed  CAS  Google Scholar 

  15. Frost HM (1964) The laws of bone structure. Charles C. Thomas, Springfield

    Google Scholar 

  16. Frost HM (1963) An introduction to biomechanics. Charles C. Thomas, Springfield

    Google Scholar 

  17. Epker BN, Frost HM (1965) Correlation of patterns of bone resorption and formation with the physical behavior of loaded bone. J Dent Res 44:33–42

    PubMed  CAS  Google Scholar 

  18. Frost HM (1979) A chondral modeling theory. Calcif Tissue Int 28:181–200

    Article  PubMed  CAS  Google Scholar 

  19. Frost HM (1983) Mechanical determinants of bone modeling. J Met Bone Dis Rel Res 4:217–230

    Article  Google Scholar 

  20. Frost HM (1986) Intermediary organization of the skeleton. Vols I, II. CRC Press, Boca Raton

    Google Scholar 

  21. Carter ER (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int (suppl) 36:S19-S24

    Article  PubMed  Google Scholar 

  22. Jee WSS (1983) The skeletal tissues In: Weiss W. L. (ed) Histology, 5th ed. Elsevier-North Holland, New York, pp 200–255

    Google Scholar 

  23. Frost HM (in press) The mechanostat: a proposed pathogenetic mechanism of osteoporoses and bone mass effects of mechanical and nonmechanical agents. Bone and Mineral 2:73–85

  24. Frost HM (1964) The laws of bone structure. Charles C. Thomas, Springfield

    Google Scholar 

  25. Frost HM (1986) Osteogenesis inperfecta: the setpoint proposal. Clin Orthop Rel Res 216:280–297

    Google Scholar 

  26. Frost HM (1983) The minimum effective strain. A determinant of bone architecture. Clin Orthop Rel Res 175:286–292

    Google Scholar 

  27. Eriksson C (1974) Streaming potentials and other water-dependent effects in mineralized tissues. Ann NY Acad Sci, 238–239

  28. Otter M, Shoenung J, Williams WS (1985) Evidence for different sources of stress-generated potentials in wet and dry bone. J Orthop Res 3:321–324

    Article  PubMed  CAS  Google Scholar 

  29. Pollack SR, Salastein R, Pienkowski D (1984) The electric double layer in bone and its influence on stress-generated potentials. Calcif Tissue Int (suppl) 36:577–581

    Google Scholar 

  30. Johnson MW (1984) Behavior of fluid in stressed bone and cellular stimulation. Calcif Tissue Int (suppl) 35:S72-S75

    Article  Google Scholar 

  31. Cochran GVB (1982) A primer of orthopaedic biomechanics. Churchill-Livingstone, Edinburgh

    Google Scholar 

  32. Frost HM (1985) The pathomechanics of osteoporoses. Clin Orthop Rel Res 200:198–225

    Google Scholar 

  33. Smith EL, Smith PE, Ensign CJ, Shea MM (1984) Bone involution decrease in exercising middle aged women. Calcif Tissue Int (suppl) 36:129–138

    Article  Google Scholar 

  34. Talmage RV, Stinnett SS, Landwehr JT, Vincent LM, McCartney WH (1986) Age-related loss of bone mineral density in non-athletic and athletic women. Bone and Minneral 1:115–125

    CAS  Google Scholar 

  35. Anderson WAD, Kissane JM (1977) Pathology, 7th ed. CV Mosby, St. Louis

    Google Scholar 

  36. Jubb KVF, Kennedy PC, Palmer N (1985) Pathology of domestic animals. Academic Press, New York

    Google Scholar 

  37. Aegerter E, Kirkpatrick JA (1975) Orthopaedic diseases. WB Saunders Co, Philadelphia

    Google Scholar 

  38. Bogemull GP, Schwamm HA (1984) Orthopaedic pathology. WB Saunders Co, Philadelphia

    Google Scholar 

  39. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff's Law. J Biomech 5:173–179

    Article  PubMed  CAS  Google Scholar 

  40. Rutishauser E, Majno G (1950) Lésions osseuses par surcharge dans le squelette normale et pathologique. Bull Schweiz Akad der Med Wiss 5:333–342

    Google Scholar 

  41. Tschantz P, Rutishauser E (1967) La surcharge mécanique de l'os vivant. Annales d'Anat et Pathol 12:233–248

    Google Scholar 

  42. Frost HM (1986) Bone microdamage: factors that impair its repair. In: Uhthoff H (ed) Current concepts of bone fragility. Springer-Verlag, Berlin, pp. 329–361

    Google Scholar 

  43. Roesler H (1981) Some historical remarks on the theory of cancellous bone structure (Wolff's Law) In: Proceedings: joint ASME-ASCE applied mechanics, fluids engineering and bioengineering conferences Am Soc Mech Engin, New York, pp 27–42

  44. Epker BN, O'Ryan F (1982) Determinants of class II dentofacial morphology, I: a biomechanical theory. In: NcNamara JA Jr, Carlson DS, Ribbens KA (eds) Effects of surgical intervention on cranofacial growth. University Michigan Press, Ann Arbor, 169–205

    Google Scholar 

  45. Liskova M, Hert J (1971) Reaction of bone to mechanical stimuli. Folia Morphol 19:301–317

    CAS  Google Scholar 

  46. Burr DB, Martin RN, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200

    Article  PubMed  CAS  Google Scholar 

  47. Beaupre GS, Hayes WC (1985) Finite element analysis of a three-dimensional, open-celled model for trabecular bone. J Biomech Eng 107:249–256

    Article  PubMed  CAS  Google Scholar 

  48. Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4:304–317

    Article  PubMed  CAS  Google Scholar 

  49. Hart RT, Davy DT, Heiple KG (1983) A predictive computational model for strain-induced remodeling in long bones. In: Transactions of the 29th Annual ORS, p 71

  50. Meade JB, Cowin SC, Klawitter JJ, VanBuskirk WC, Skinner HB (1984) Bone remodeling due to continuously applied loads. Calcif Tissue Int (suppl) 36:S25-S30

    Article  PubMed  Google Scholar 

  51. Parfitt AM (1984) The cellular basis of remodeling: the quantum concept reviewed in the light of recent advances in the cell biology of bone. Calcif Tissue Int (suppl) 36:37–45

    Article  Google Scholar 

  52. Frost HM (in press) Secondary osteon population densities. An algorithm for determining mean tissue age. Yrbk Phys Anthrop

  53. Kimmel DB (1985) A computer simulation of the mature skeleton. Bone 6:369–373

    Article  PubMed  CAS  Google Scholar 

  54. Martin RB (1985) The usefulness of mathematical models for bone remodeling. Yearbook Phys Anthrop 227–236

  55. Reeve J (1986) A stochastic analysis of iliac trabecular bone dynamics. Clin Orthop Rel Res 213:264–278

    Google Scholar 

  56. Cowin SC (1986) Wolff's Law of trabecular architecture at remodeling equilibrium. J Biomech Eng 108:83–88

    Article  PubMed  CAS  Google Scholar 

  57. Courpron P (1981) Bone tissue mechanisms underlying osteoporoses. Orthop Clin North Am 12:513–546

    PubMed  CAS  Google Scholar 

  58. Wolff JL (1892) Das gesetz der transformation der knochen A Hirschwald, Berlin

    Google Scholar 

  59. Schnitzler TM, Solomon L (1986) Histomorphometric analysis of a calcaneal stress fracture: a possible complication of fluoride therapy for osteoporosis. Bone 7:193–198

    Article  PubMed  CAS  Google Scholar 

  60. Jaworski ZFG (1984) Lamellar bone turnover system and its effector organ. Calcif Tissue Int (suppl) 36:46–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, H.M. Vital biomechanics: Proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42, 145–156 (1988). https://doi.org/10.1007/BF02556327

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556327

Navigation