Appendix IV: detailed summary of findings table

Pulse oximete	ers vs. no pulse oximet	ers to inform di	agnosis and treatment (excluding operativ	ve surgical care)		
Population: n	ewborns, children and	adolescents ag	ed up to 19 years				
Intervention:	pulse oximeter reading	gs					
Control: popu	llations with no pulse c	ximeter readin	gs				
Outcomes: m	ortality rates, morbidit	y, length of hos	spital stay				
Outcomes	Overall outcome	Number of	Specific study differences between	Number of	Relative	Absolute	Quality
	difference	participants	control and intervention group [see	participants	effect	effect	of the
	between control	by outcome	Risk of Bias table for risk of bias	by study	(with 95%	(with	evidence
	and intervention	(studies)	assessments for each study]		CI)	95% CI)	- GRADE
	group						
Mortality	The introduction	11,291 (1 –	-Mortality rate changed from 4.97% to	11,291	RR: 0.648	Reduction	Very low ⁱ
rates	of pulse	Duke et.al.,	3.22% (35% relative reduction) [for		(0.533,	of 1.75%	
	oximeters alone	2008)	those admitted with a diagnosis of		0.788)	(1.101,	
	may lead to a		pneumonia] after pulse oximeters,			2.398) or	
	reduction in		oxygen concentrators and training			17 fewer	
	mortality		introduced[27]			deaths	
	rates.[27]					per 1000	
			-Mortality rate changed from 5.53% to	32,335		patients	
			4.1% (26% relative reduction) [for				
			those > 1 month old admitted with any				
			diagnosis] after pulse oximeters,				
			oxygen concentrators and training				
		2564/2	introduced[27]				1/2.00
Morbidity:		2564 (2 – Anderson			n/a	n/a	Very Iow ⁱⁱ
-Assessed	-When pulse	et.al., 1991;	-No difference [in children with	83			IOW
degree of	oximeter results	Mower	diagnosis of 'well', 'minor orthopaedic	65			
illness	are obtained in	et.al., 1997)	injuries' or 'minor surgical injuries']				
miless	the ED, the	et.al., 1557)	after physicians received pulse				
	assessed degree		oximeter results[25]				
	of illness and the						
	or niness and the						

	diagnosis for children may be different than if pulse oximeter results are not obtained. This is especially the case for children who do not have a diagnosis of 'well', 'minor orthopaedic injuries' or 'minor surgical injuries', and/or is more likely in children who have low SaO2		-53% [of children with diagnoses that were not 'well', 'minor orthopaedic injuries' or 'minor surgical injuries'] had a change after physicians received pulse oximeter results; 25% of these were assessed as more ill; 69% were assessed as less ill; direction of change was unknown for 6%[25]	354			
-Diagnosis	values.[25,29]		-diagnosis was changed for 8% of children [of those with SaO2<95%] after physicians received pulse oximeter results [29]	305			
			-diagnosis was changed for 0.7% of children [of those with SaO2≥95%] after physicians received pulse oximeter results [29]	1822			
Length of	The introduction	622 (3 –	-Time spent in ED triage decreased	248	Mean	17 fewer	Very
hospital stay	of pulse oximetry into triage may decrease the average time	Choi & Claudius, 2006; Maneker	from 4 hours 59 minutes to 4 hours 9 minutes (50 minutes less; a 17% decrease) after pulse oximeters		difference: 50 minutes (5.405, 94.595)	minutes spent in triage per	low ⁱⁱⁱ

	children spend in	et.al., 1995;	introduced into emergency		1	100	
	triage and may	Mower	department triage[26]		/ n/a	minutes	
	increase the	et.al., 1997)			ny a	/	
	proportion of	et.al., 1997)	-28% were admitted only after the	46		/ n/a	
	hypoxic children		pulse oximeter readings were revealed	40		Пла	
	who are		[out of children with unexpectedly low				
	admitted.[26,28,		SaO2 (where low SaO2 defined as				
	29]		<92%)][28]				
	29]		<92%]][20]				
			-4% were admitted only after the pulse	23			
			oximeter readings were revealed [out	23			
			of children with expectedly low SaO2				
			(where low SaO2 defined as				
			<pre><92%)][28]</pre>				
			< <u>92</u> /0]][20]				
			-2% were admitted only after the pulse	305			
			oximeter readings were revealed [out				
			of the children with SaO2<95%][29]				
			-0.3% were admitted only after the	1822			
			pulse oximeter readings were revealed				
			out of the children with				
			SaO2≥95%][29]				
Secondary	When pulse	2633 (3 –	-No difference [in children with	83	n/a	n/a	Very
research	oximeter results	Anderson	diagnosis of 'well', 'minor orthopaedic				Low ^{iv}
question:	are obtained in	et.al., 1991;	injuries' or 'minor surgical injuries']				
treatment	the ED, the	Maneker	after pulse oximeter results				
and	management	et.al., 1995;	received[25]				
management	plans for children	Mower					
	may be different	et.al. <i>,</i> 1997)	-19% [of children with diagnoses that	354			
	than if pulse		were not 'well', 'minor orthopaedic				
	oximeter results		injuries' or 'minor surgical injuries']				
	are not obtained.		had a change after physicians received				

This is especially	pulse oximeter results; 39% of these]
the case for	•			
children who do	had more aggressive management			
	after; 58% were managed less			
not have a	aggressively after; direction of change			
diagnosis of	was not documented for 3%[25]			
'well', 'minor				
orthopaedic	-91% [of those who unexpectedly had	46		
injuries' or 'minor	low SaO2 (where low SaO2 defined as			
surgical injuries',	<92%)] had a change after physicians			
and/or is more	received pulse oximeter results; 90% of			
likely in children	these had oxygen added[28]			
who have low				
SaO2 values,	-43% [of those who expectedly had low	23		
particularly if	SaO2 (where low SaO2 defined as			
these are	<92%)] had a change after physicians			
unexpectedly	received pulse oximeter results; 90% of			
low.[25,28,29]	these had oxygen added[28]			
	-new diagnostic tests were ordered for	305		
	20% [of those with SaO2<95%] after			
	physicians received pulse oximeter			
	results [29]			
	-new diagnostic tests were ordered for	1822		
	0.5% [of those with SaO2 \geq 95%] after	1011		
	physicians received pulse oximeter			
	results [29]			
	-new treatments were ordered for 11%	305		
	[of those with SaO2<95%] after	505		
	physicians received pulse oximeter			
	results [29]			

	-new treatments were ordered for 1%	1822		
	[of those with SaO2≥95%] after			
	physicians received pulse oximeter			
	results [29]			

Footnotes:

¹ Non-controlled before-after study: Study limitations – there is a high risk of bias as the Duke et.al.,2008 study had a serious risk of bias, due mainly to the fact that oxygen concentrators and training were introduced into the study hospitals concurrently with pulse oximeters so it is not possible to determine how much of the change in mortality rates shown in the study was due specifically to pulse oximeter use; indirectness – the study was looking at the impact of the introduction of pulse oximeters and oxygen concentrators on mortality rates, rather than just the introduction of pulse oximeters alone; imprecision - only 1 study (and it did not report confidence intervals for the measure of interest); this outcome has therefore been downgraded from Low to Very Low.

ⁱⁱ Non-controlled before-after studies: Study limitations – there is a high risk of bias as both of these studies had a serious risk of bias, because the physicians in both studies were aware of the intervention status of the participants and so may have been more likely to take the pulse oximeter results into account than had they received the pulse oximeter results during their initial evaluations; in addition the authors of Mower et.al. 1997 excluded 20% of children who could have been included in the study, potentially affecting the results, and the authors of Anderson et.al. 1991 excluded a subgroup of children from the analyses when it became evident that pulse oximeter results did not impact their management, so the study's results of pulse oximeter impact were exaggerated; indirectness – the changes in degree of illness and diagnosis shown in these studies are not actual changes in morbidity, they are changes in physicians' perceptions of morbidity; also both studies were looking at different sub-outcomes and different subgroups from each other, most of which were not directly relevant to, or only partially relevant to, the review; imprecision – only 2 studies (neither of which reported any confidence intervals); this outcome has therefore been downgraded from Low to Very Low.

ⁱⁱⁱ Non-controlled before-after studies: Study limitations – there is a high risk of bias as two of the studies had a serious risk of bias, because the physicians in both studies were aware of the intervention status of the participants and so may have been more likely to take the pulse oximeter results into account than had they received the pulse oximeter results during their initial evaluations; in addition 20% and 32% of potential participants were not included in the Mower et.al. 1997 and Maneker et.al. 1994 studies respectively, potentially affecting the results; indirectness – the outcomes investigated in the three studies (length of stay in ED triage, and % admitted) are indirectly related to but not exactly the same as, the outcome of length of hospital stay; imprecision – only 3 studies (none of which reported any confidence intervals); this outcome has therefore been downgraded from Low to Very Low.

^{IV}Non-controlled before-after studies: Study limitations - there is a high risk of bias as all three of these studies had a serious risk of bias, because the physicians in all three studies were aware of the intervention status of the participants and so may have been more likely to take the pulse oximeter results into account than had they received the pulse oximeter results during their initial evaluations; in addition 20% and 32% of potential participants were not included in the Mower et.al. 1997 and Maneker et.al. 1994 studies respectively, potentially affecting the results; also the authors of Anderson et.al. 1991 excluded a subgroup of children from the analyses when it became evident that pulse oximeter results did not impact their management, so the study's results of pulse oximeter impact were exaggerated; indirectness – the secondary research question considered the impact of pulse oximeter use on the proportion of children receiving oxygen therapy – only one of the studies actually reported the number of children in both groups who received oxygen therapy while the other two studies only reported results on outcomes that are related to oxygen therapy, by, like oxygen therapy, being examples of treatment and management; also all three studies were looking at different sub-outcomes and different subgroups from each other, most of which were not directly relevant to, or only partially relevant to, the review; imprecision – only 3 studies (none of which reported any confidence intervals); this outcome has therefore been downgraded from Low to Very Low.