Article Text
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease of childhood affecting 1:500 children aged under 15 years, with around 25% presenting with life-threatening diabetic ketoacidosis (DKA). While first-degree relatives have the highest risk of T1D, more than 85% of children who develop T1D do not have a family history. Despite public health awareness campaigns, DKA rates have not fallen over the last decade. T1D has a long prodrome, and it is now possible to identify children who go on to develop T1D with a high degree of certainty. The reasons for identifying children presymptomatically include prevention of DKA and related morbidities and mortality, reducing the need for hospitalisation, time to provide emotional support and education to ensure a smooth transition to insulin treatment, and opportunities for new treatments to prevent or delay progression. Research studies of population-based screening strategies include using islet autoantibodies alone or in combination with genetic risk factors, both of which can be measured from a capillary sample. If found during screening, the presence of two or more islet autoantibodies has a high positive predictive value for future T1D in childhood (under 18 years), offering an opportunity for DKA prevention. However, a single time-point test will not identify all children who go on to develop T1D, and so combining with genetic risk factors for T1D may be an alternative approach. Here we discuss the pros and cons of T1D screening in the UK, the different strategies available, the knowledge gaps and why a T1D screening strategy is needed.
- child health
- endocrinology
- global health
Data availability statement
No data are available. Not applicable.
Statistics from Altmetric.com
Data availability statement
No data are available. Not applicable.
Footnotes
Twitter @mayng888
Contributors REJB conceptualised the manuscript, wrote the first draft and edited the final draft. SMN, JWG, CMD, TR and TB wrote the manuscript and edited and commented on the final draft.
Funding The work was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), the Wellcome Centre for Human Genetics (203141/Z/16/Z), and grants from Wellcome (107212/A /A/15/Z) and JDRF (4-SRA-2017-473 A-N) to the Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics. The UK Type 1 Diabetes Immunotherapy Consortium is supported by grants from D UK and JDRF.
Disclaimer The content and views expressed are the responsibility of the authors and do not necessarily reflect the official view of the NIHR.
Competing interests REJB reports receiving speaking honoraria from Springer Healthcare and Eli Lilly, and reports sitting on the NovoNordisk UK Foundation Research Selection Committee on a voluntary basis. TR reports receiving consultancy fees from Abbott Diabetes Care (specifically for Libre evidence reviews) and lecture/programme organiser fees from Novo Nordisk. CMD reports having been an advisor giving honorarium lectures to NovoNordisk, Sanofi-genzyme, Janssen, Servier, Lilly, AstraZeneca, Provention Bio, UCB, MSD and Vielo Bio. CMD holds a joint patent with Midatech. JWG chairs the NovoNordisk UK Foundation Research Selection Committee and is a Foundation Trustee. TB reports receiving speaking honoraria from AstraZeneca, Servier and Novo Nordisk, and has received consultancy fees from Novo Nordisk and is an NN Global Expert Panel.
Provenance and peer review Commissioned; externally peer reviewed.
Linked Articles
- Highlights from this issue