Article Text

Download PDFPDF
Future of machine learning in paediatrics
  1. Sarah LN Clarke1,2,3,
  2. Kevon Parmesar2,
  3. Moin A Saleem4,5,
  4. Athimalaipet V Ramanan3,6
  1. 1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
  2. 2School of Population Health Sciences, University of Bristol, Bristol, UK
  3. 3Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
  4. 4Bristol Renal, University of Bristol, Bristol, UK
  5. 5Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
  6. 6School of Translational Health Sciences, University of Bristol, Bristol, UK
  1. Correspondence to Professor Athimalaipet V Ramanan, Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK; a.ramanan{at}bristol.ac.uk

Abstract

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn without being explicitly programmed, through a combination of statistics and computer science. It encompasses a variety of techniques used to analyse and interpret extremely large amounts of data, which can then be applied to create predictive models. Such applications of this technology are now ubiquitous in our day-to-day lives: predictive text, spam filtering, and recommendation systems in social media, streaming video and e-commerce to name a few examples. It is only more recently that ML has started to be implemented against the vast amount of data generated in healthcare. The emerging role of AI in refining healthcare delivery was recently highlighted in the ‘National Health Service Long Term Plan 2019’. In paediatrics, workforce challenges, rising healthcare attendance and increased patient complexity and comorbidity mean that demands on paediatric services are also growing. As healthcare moves into this digital age, this review considers the potential impact ML can have across all aspects of paediatric care from improving workforce efficiency and aiding clinical decision-making to precision medicine and drug development.

  • healthcare economics and organisations
  • information technology

Data availability statement

No data are available. None applicable.

Statistics from Altmetric.com

Data availability statement

No data are available. None applicable.

View Full Text

Footnotes

  • Twitter @Dr_SLNC

  • SLC and KP contributed equally.

  • Contributors AVR designed the review. AVR and MAS supervised this review. SLNC and KP undertook the literature searches and wrote the manuscript. All authors provided input in the manuscript revisions and agreed on the final draft.

  • Funding KP is an academic clinical fellow funded by the National Institute for Health Research (ACF-2019-25-012). SLNC is funded by the Wellcome Trust (203918/Z/16/Z). AVR and SLNC are also part of the MRC-funded CLUSTER consortium (MR/R013926/1). MAS receives MRC Precision Medicine award (MRC/R013942/1) and MRC Global Challenges award (MR/P024297/1) funding. This research was funded in whole, or in part, by the Wellcome Trust (203918/Z/16/Z).

  • Disclaimer The funders had no input in the content of this review.

  • Competing interests None declared.

  • Provenance and peer review Commissioned; internally peer reviewed.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.