Prevalence of thrombotic complications in children with SARS-CoV-2

David Aguilera-Alonso, Sara Murias, Amelia Martínez-de-Azagra Garde, Antoni Soriano-Arandes, Marta Pareja, Enrique Otheo, Cinta Moraleda, Alfredo Tagarro, Cristina Calvo, on behalf of EPICO-AEP Working Group

ABSTRACT

Knowledge of thrombosis in children with SARS-CoV-2 is scarce. In this multicentre national cohort of children with SARS-CoV-2 involving 49 hospitals, 4 patients out of 537 infected children developed a thrombotic complication (prevalence of 0.7% (95% CI: 0.2% to 1.9%) out of the global cohort and 1.1% (95% CI: 0.3% to 2.8%) out of the hospitalised patients). We describe their characteristics and review other published paediatric cases. Three out of the four patients were adolescent girls, and only two cases had significant thrombotic risk factors. In this paediatric cohort, D-dimer value was not specific enough to predict thrombotic complications. Adolescence and previous thrombotic risk factors may be considered when initiating anticoagulant prophylaxis on children with SARS-CoV-2 disease (COVID-19).

INTRODUCTION

The disease caused by SARS-CoV-2, named COVID-19, has spread rapidly. Among adult patients, a significant prevalence of thrombotic complications has been described. This risk has been linked to a hypercoagulability state, which has conditioned the publication of guidelines on anticoagulant management in patients with COVID-19.1,2

However, due to the lower experience in COVID-19 disease in children, these guidelines have not included specific recommendations for paediatric patients. Based on adult recommendations, several authors have proposed some indications for anticoagulant prophylaxis that take into account individual risk factors.3 Nevertheless, to date, there is scarce information about thrombotic complications in children with COVID-19. We aimed to describe thrombotic complications among children infected with SARS-CoV-2.

METHODS

The Epidemiological Study of COVID-19 in children was launched and supported by the Spanish Society of Pediatrics (EPICO-AEP) as a multicentre prospective national cohort study aiming to describe paediatric COVID-19 in Spain. Children younger than 18 years of age infected by SARS-CoV-2 and attended at 49 hospitals are currently being enrolled in this registry. Inclusion criteria include positivity in real-time PCR (RT-PCR), IgM or IgG in lateral-flow rapid test, ELISA or chemiluminescence serology, or disease suggestive of multi-inflammatory syndrome related to SARS-CoV-2 in children (MIS-C). From 1 March to 30 September 2020, children with thrombotic complications associated with SARS-CoV-2 enrolled in EPICO-AEP were included in this study.

Thrombotic complications associated with SARS-CoV-2 infection were defined as any radiologically confirmed thrombosis, arterial or venous, occurring close to the diagnosis of SARS-CoV-2 infection (up to 3 weeks). Microthrombi phenomena related or suspected to be related to SARS-CoV-2 (eg, acral chilblains) were not included. Two-sided 95% Clopper-Pearson exact CIs (95% CI) for binomial proportions were calculated for prevalence. Data were analysed using the Stata V.15 (College Station, Texas, USA).

RESULTS

By 30 September, 537 children were diagnosed with SARS-CoV-2 infection and included in the EPICO-AEP cohort. The median age was 61 months (IQR: 6–140 months), and 293 (54.6%) were boys. Of those, 368 (68.5%) were hospitalised, requiring paediatric intensive care unit admission (PICU), 58 (10.8%) cases were diagnosed with MIS-C. D-dimer was available from 169 patients, with a median of 1071 µg/L (IQR: 291–2858 µg/L). Anticoagulant drugs (heparin in all cases) were administered to 29 (5.4%) patients: prophylaxis in 24 (82.8%) cases, and as treatment in 5 (17.2%) cases. Most of the patients on thromboprophylaxis had severe COVID-19 (79.2% admitted to PICU and 56.3% received inotropic support). Four cases, which correspond to 0.7% (95% CI: 0.2% to 1.9%) out of the global cohort and 1.1% (95% CI: 0.3% to 2.8%) out of the hospitalised patients, developed some thrombotic complication. A fifth case receiving anticoagulant treatment was a patient who had a history of venous thrombosis not related to SARS-CoV-2 infection and was not included in this report.

Three out of these four patients were adolescent girls (table 1, cases 1–4). None of the cases was diagnosed with MIS-C. Two patients (patients 1 and 2) had several significant thrombotic risk factors. Patients 3 and 4 did not have any previous personal or family risk factors for thrombosis. However, in patient 3, after thrombosis diagnosis,
Table 1

Characteristics of children with SARS-CoV-2 infection and thrombosis from EPICO-AEP cohort (cases 1–4) and from literature review (cases 5–13)

| N | Age | Sex | Medical background/ risk factors | Other thrombotic risk factors | Family thrombotic history | Thrombotic complication | Other signs/symptoms | SARS-CoV-2 RT-PCR | SARS-CoV-2 Abs | D-dimer (µg/L) | Thrombo prophylaxis* | Anticoagulation treatment | Thrombophilia work-up | Outcome† |
|----|-----|-----|----------------------------------|-----------------------------|-----------------------------|-------------------------|------------------------|-----------------|----------------|--------------|----------------|---------------------|-------------------------|--------------------------|----------|
| 1 | 4 years | Female | Systemic juvenile idiopathic arthritis on treatment with steroids and canakinumab | Central venous catheter | No | Right iliac vein thrombosis | Fever, cough and rhinorrhoea | Positive | Negative | 5953‡ | No | LWH | NA | Discharged without sequelae |
| 2 | 12 years | Female | B cell acute lymphoblastic leukemia on induction chemotherapy and obesity | Central venous catheter and asparaginase treatment | No | Thrombosis of the right upper limb | Dyspnoea and thoracic pain (pulmonary embolism was ruled out) | Positive | IgG positive | 232‡ | LWH | LWH | Decreased protein C activity (58%) | Discharged without sequelae |
| 3 | 13 years | Female | | | | Left common and superficial femoral vein thrombosis | Fever, hyporexia, headache, asthma, rash, abdominal pain and vomiting | Positive | NA | 1194‡ | No | LWH and cava filter | Lupus anticoagulant positive (remained positive 5 months later) | Discharged without sequelae |
| 4 | 13 years | Female | | | | Thrombosis of the transverse sinus and of the jugular vein, pulmonary embolism and cerebrovascular thrombosis | Fever and odynophagia | Positive | NA | 35 420‡ | No | Continuous unfractionated heparin followed by LWH | Normal | Discharged without sequelae |
| 5 | 16 years | Female | Homozygous sickle cell disease | No | ND | Bilateral pulmonary embolism | Fever, cough, anaemia, acute chest syndrome | Positive | ND | 23 611‡ | No | Yes (not fully described) | ND | Discharged |
| 6 | 5 years | Male | | | | Right middle cerebral artery infarction, cerebral oedema and diffuse contralateral subarachnoid haemorrhage§ | Fever, cough, and abdominal pain; cardiogenic shock with cardiopulmonary failure | ND | Positive | 15 000 | Yes | ND | ND | Brain death |
| 7 | 2 months | Male | Tracheomalacia requiring tracheostomy | ECMO | ND | Bilateral middle cerebral artery and posterior cerebral artery territory infarction with haemorrhagic transformation§ | Respiratory failure, pneumomediastinum, and bilateral pneumothoraces | ND | Negative | ND | ND | ND | ND | Admitted |
| 8 | 12 years | Female | | | | Popliteal-to-common iliac vein thrombosis and massive pulmonary embolism | No | Negative | IgM positive | 1953 | No | Percutaneous mechanical venous thrombectomy, thrombolysis and infrahepatic venous filter | Antiphospholipid antibodies | Discharged without neurological deficits |
| 9 | 16 years | Male | Sphenoid sinusitis | ND | ND | Caesarean sinus thrombosis and left middle cerebral artery stroke | Aseptic meningitis associated with stupor | Positive | ND | ND | No | Yes (not fully described) | ND | Died |
| 10 | 16 years | Male | | | | Deep venous thrombosis of the lower limbs with pulmonary emboli | ND | Positive | ND | ND | ND | ND | ND | ND |
| 11 | 6 years | Male | | | | Small segmental pulmonary emboli | MIS-C (fever, hypoxic respiratory failure, abdominal pain) | Positive | ND | ND | ND | ND | ND | ND |
| 12 | 5 years | Male | | | | Right anterior and middle cerebral artery ischaemic infarction§ | MIS-C (fever, vomiting, cough, abdominal pain) | Negative | Positive | 18 300 | Heparin | ND | ND | Brain death |
| 13 | 2 years | Female | Military tuberculosis | ND | | Thrombosis of the superior sagittal sinus and the transverse sinuses and cerebral infarction involving the anterior limb of the right internal capsule, lentiform nucleus and thalamus | Weakness, lethargy and cervical lymphadenopathy | Positive | ND | 14 800 | No | Aspirin | ND | Discharged with residual left hemiparesis |

*Thrombophilia work-up before thrombosis diagnosis.
†Outcome when this article or the reviewed articles were published.
‡Highest value during the episode.
§These cases were supposed to be hypercoagulable manifestations of COVID-19/MIS-C.
Abs, antibodies; ECMO, extracorporeal membrane oxygenation; LWH, low-weight heparin; MIS-C, multi-inflammatory syndrome related to SARS-CoV-2 in children; NA, not available; ND, not described; RT-PCR, real-time PCR.
a thrombophilia work-up was performed, which revealed a positive lupus anticoagulant, remaining positive 5 months later.

The only patient receiving thromboprophylaxis (low-weight heparin) before thrombosis was patient 2. D-dimer levels were severely increased in patients 1 (5953 µg/L) and 4 (35 420 µg/L) but were only slightly increased in the other cases (1194 and 232 µg/L, respectively). All cases except patient 3 had SARS-CoV-2 RT-PCR confirmation coinciding with thrombosis diagnosis. In patient 3, COVID-19 was initially suspected but not microbiologically confirmed until 3 weeks after thrombosis. All cases had thrombosis affecting the limbs, with cerebral venous sinus thrombosis and pulmonary embolism in one of them. All patients were treated with heparin and discharged without sequelae.

DISCUSSION

To the best of our knowledge, this is the first study that describes thrombotic complications in children with SARS-CoV-2 infection in a large cohort. Only four patients developed a thrombotic complication (1.2% of hospitalised children with non-MIS-C SARS-CoV-2 infection). Although this prevalence is not as high as in hospitalised adults with COVID-19, it is slightly higher than that previously described in hospitalised children without COVID-19 (0.13%–0.53%). Among the factors associated with a lower incidence of thromboembolic complications in children with COVID-19, a different balance in coagulation homeostasis, with a higher concentration of antithrombotic serum factors (eg, alpha-2-macroglobulin) in children compared with adults, a protective ‘healthy’ endothelium or fewer comorbidities have been proposed.

Only two of our four cases had significant thrombotic risk factors (central venous catheter, obesity, malignancy or aspirinase treatment), highlighting the difficulty of predicting thrombotic complications in children with COVID-19 to initiate anticoagulant prophylaxis. Thrombosis is very uncommon in patients under 18 years old, and systemic anticoagulant prophylaxis may have adverse events that outweigh its benefit. Of note, one patient was diagnosed with antiphospholipid syndrome, showing lupus anticoagulant persistently elevated. Transient lupus anticoagulant has been described in patients with COVID-19, but its significance is unclear.

We conducted a systematic search in order to review reported paediatric patients diagnosed with SARS-CoV-2 infections with any thrombotic complication (search strategy in online supplemental material). Ten cases were found (full references in online supplemental material); one of them included in our series (case 4). **Table 1** (cases 5–13) shows the main characteristics of the reported cases. Additionally, three (3.8%) and four (2.2%) cases diagnosed with MIS-C from two other national cohorts developed a venous thrombosis, but their full clinical information was not available.

The central nervous system was the most commonly affected site (six cases), followed by the lung (five cases) and lower limbs (three cases). Similar to our data, most of the patients were adolescents. This age distribution is also seen in patients with MIS-C, in which the prevalence of thrombosis increases with the age of the patients: 0 of 66 (0%), 1 of 75 (1.3%) and 3 of 45 (6.7%) in patients aged <5 years, 5–12 years and 13–20 years, respectively. This peak of cases with thrombosis affecting adolescents is similar to what is seen in hospitalised children without COVID-19.

Markedly elevated plasma D-dimer levels (eg, ≥5 times the upper limit of normal values) has been proposed as an indication for anticoagulant prophylaxis in children hospitalised with SARS-CoV-2-related illness. In our cohort, 68 of 169 (40.2%) had a value >1500 µg/L. However, only 2 of 68 (2.9%) cases developed a thrombotic complication. Therefore, the use of the D-dimer value is not specific enough to make decisions regarding anticoagulant prophylaxis in children. In our opinion, other factors, such as the age (considering adolescents especially vulnerable), coexistence of risk factors (eg, malignancy, indwelling central venous catheter, obesity, immobility, etc), or MIS-C diagnosis, should be considered when initiating anticoagulant prophylaxis in children with COVID-19. Of note, a clinical trial is currently evaluating the safety and efficacy of thromboprophylaxis in children hospitalised with signs and/or symptoms of SARS-CoV-2 infection (ClinicalTrials.gov NCT04354153).

Our study has some limitations, such as the variability of tests that were used to diagnose infection, not only the gold standard PCR, which could make false results. Additionally, since ultrasound was not routinely performed in all patients, subclinical thrombosis may not have been diagnosed.

In conclusion, except in the MIS-C, unlike adults, thrombotic complications seem very uncommon in children with SARS-CoV-2. Adolescence and previous thrombotic risk factors may be considered when initiating thromboprophylaxis in children with COVID-19. Further studies are needed to clarify risk factors among children with COVID-19 in order to develop specific recommendations.

Author affiliations

1. Pediatric Infectious Diseases Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
2. Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
3. Pediatric Rheumatology Department, Hospital La Paz, Madrid, Spain
4. Pediatric Intensive Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
5. Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Vall d’Hebron, Barcelona, Spain
6. Department of Pediatrics, Hospital General de Albacete, Albacete, Spain
7. Department of Pediatrics, Hospital Ramón y Cajal, Madrid, Spain
8. Pediatric Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
9. Fundación de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario Infanta Sofia, Madrid, Spain
10. Departamento de Investigación, Hospital Universitario Infanta Sofia y del Henares, Madrid, Spain
11. Universidad Europea, Madrid, Spain
12. Fundación de Investigación, Hospital Universitario La Paz, Madrid, Spain
13. Deparment of Pediatrics, Infectious and Tropical Diseases, Hospital Universitario La Paz, Madrid, Spain

Twitter David Aguilera-Alonso @DavidAguileraAl, Antoni Soriano-Arandes, Amalia Soria-66 and Cristina Calvo @ClavoretRTIP

Collaborators EPICO-AEP Working Group: Mar Santos, Marisa Navarro, Jesús Saavedra, Elena Rincón, Begoña Santiago (Hospital Universitario Gregorio Marañón); Pablo Rojo, Daniel Blázquez, Luis Prieto, Elisa Fernandez-Cooke, Cristina Espallar; Sara Dominguez-Rodriguez, Serena Villaverde (Hospital 12 de Octubre); Maria Jose Mellado, Teresa del Rosal, Carlos Grasa, Paula Rodriguez Molino (Hospital La Paz); Francisco José Sanz-Santaeufemia, José Antonio Alonso Cadenas, Gero Calleja, Maria Isabel Iglesias Bouzas, Blanca Herrero (Hospital Universitario Niño Jesús); Victoria Fumadó, Miguel Lanasa; Silvia Simó (Hospital Sant Joan de Déu); Susana Melendo, Pere Soler-Palacin (Hospital Vall d’Hebron); Maria Urretavizcaya, Mercedes Hierranz (Complejo Hospitalario de Navarra); Fatima Ara, Santiago Cabañas (Hospital Universitario Quirónsalud Madrid); Rut del Valle, Maria Fernández, Teresa Raga, Maria de la Serna, Ané Plazaola (Hospital Infantia Sofia); Maria Dolores Martin (BR Salud); Enrique Otheo, José Luis Vázquez (Hospital Ramón y Cajal); Lola Falcón, Olaf Neth, Peter Olbrich, Walter Goicoechea (Hospital Universitario Virgen del Rocío); Laura Martín (Hospital Universitario Regional de Málaga); Lluïsa Figueroa (Hospital de Villalba); Maria Lorente (Hospital Universitario del Sureste); Maria Penn, Claudia García, María García, Teresa Alvaredo (Hospital Pincipte de Asturias); Ma Inmaculada Olmedo, Agustín López (Hospital Puerta de Hierro); Elvira Cob (Hospital Fundación Alcorcón); Mariam Toviz (Hospital del Tajo); Pilar Galán (Hospital...
and EO did the follow-

4

Contributors DA-A, CC, CM and AT designed the study. SM, AM-d-a, AS-A, MP and EO did the follow-up of patients with COVID-19 and thromboembolism. DA-A and CC drafted the initial manuscript. CM, AT, SM, AM-d-a, AS-A, MP and EO reviewed and edited the manuscript. All authors approved the final version of the manuscript.

Funding This study was funded by project PI20/00095, from the Instituto de Salud Carlos III and Fondos FEDER, and partially supported by a grant from the Spanish Society of Pediatrics (AEP). DA-A is funded by the Spanish Ministry of Health–Instituto de Salud Carlos III and co-funded by the European Union (FEDER) (Contrato Río Hortega CM18/00100).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study was approved by the Ethics Committee of Hospital 12 de Octubre (20/101).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplemental information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMI Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID iDs

David Aguilera-Alonso http://orcid.org/0000-0003-1017-2386
Sara Murias http://orcid.org/0000-0003-3309-0722
Amelia Martínez-de-Azagra Garde http://orcid.org/0000-0002-7997-0821
Antoni Soriano-Arandes, http://orcid.org/0000-0001-9613-7228
Cinta Moraleda http://orcid.org/0000-0002-8335-903X
Alfredo Tagarro http://orcid.org/0000-0003-2860-3455
Cristina Calvo http://orcid.org/0000-0002-6503-3423

REFERENCES