Can TEN4 distinguish bruises from abuse, inherited bleeding disorders or accidents?

Alison Mary Kemp,1 Sabine Ann Maguire,1 Dianne E Nuttall,1 Peter Collins,2 Frank D Dunstan,1 Daniel Farewell1

ABSTRACT

Objective Does TEN4 categorisation of bruises to the torso, ear or neck differ in <4-month-old children differentiate between abuse, accidents or inherited bleeding disorders (IBDs)?

Design Prospective comparative longitudinal study.

Setting Community.

Patients Children <6 years old.

Interventions The number and location of bruises compared for 2568 data collections from 328 children in the community, 1301 from 106 children with IBD and 342 abuse cases.

Main outcome measures Likelihood ratios (LRs) for the number of bruises within the TEN and non-TEN locations for pre-mobile and mobile children: abuse vs accidental injury, IBD vs accident, abuse vs IBD.

Results Any bruise in a pre-mobile child was more likely to be from abuse/IBD than accident. The more bruises a pre-mobile child had, the higher the LR for abuse/IBD vs accident. A single bruise in a TEN location in mobile children was not supportive of abuse/IBD. For mobile children with more than one bruise, including at least one in TEN locations, the LR favouring abuse/IBD increased. Applying TEN4 to collections from abused and accidental group <48 months of age with at least one bruise gave estimated sensitivity of 69% and specificity for abuse of 74%.

Conclusions These data support further child protection investigations of a positive TEN4 screen in any pre-mobile children with a bruise and in mobile children with more than one bruise. TEN4 did not discriminate between IBD and abuse, thus IBD needs to be excluded in these children. Estimated sensitivity and specificity of TEN4 was appreciably lower than previously reported.

INTRODUCTION

In young children who present with concerning patterns of bruising, the differential diagnosis includes accidental injury, physical abuse and coagulation disorders such as inherited bleeding disorders (IBDs). The clinician must identify the cause of the bruising and decide whether the child requires further clinical or child protection investigations. In 2010, Pierce et al published a pilot study “discriminating bruising characteristics, to model those findings into a decision tool for screening children at high risk for abuse”. The Bruise Clinical Decision Rule (BCDR) was developed from 71 children (42 had been abused) admitted to paediatric intensive care units with trauma and examined for bruising. The TEN4 BCDR emerged whereby “bruising on the torso, ear, or neck for a child <48 months of age and bruising in any region for an infant <4 months of age, in the absence of a publicly witnessed injury” had a sensitivity of 97% and a specificity of 84% for predicting abuse. TEN4 is gaining momentum internationally as a recommended decision rule across a wider population of children.

What is already known on this topic?

- Bruising is the most common presentation of accidents, physical abuse and inherited bleeding disorder in young children, and clinicians must differentiate between these three conditions.
- The TEN4 bruising clinical decision rule (sensitivity 97%, specificity 84% for abuse in paediatric intensive care unit) is being used in wider clinical settings.
- It is important to test the rule in these wider settings.

What this study adds?

- These data support further child protection investigations of a positive TEN4 screen in a pre-mobile child and a mobile child with more than one bruise.
- TEN4 did not discriminate between inherited bleeding disorder (IBD) and abuse, thus IBD must be excluded in these children.
- Estimated sensitivity (68.8%) of TEN4 and specificity (72.1%) for abuse was appreciably lower in this study than previously reported.
Original research

- Accidents: children from well-baby clinics, hospital outpatient clinics, and mother and baby groups in south Wales.1
- IBD: children attending six haemophilia centres across UK and Canada.5

Definitions

Physical abuse was confirmed at multiagency child protection strategy meetings or case conference, where a joint decision as to probable abuse was made based on all information available. IBDs included haemophilia A, factor XI deficiency, von Willebrand disease or platelet disorders. Children with mild and moderate IBD were not analysed separately due to insufficient numbers of subjects. The accidental group included children from the community who sustained bruises from accidents or everyday activities.

DATA COLLECTION

Parents of the ‘accidental group’ and those with IBD prospectively recorded the number of bruises, and their location, on a body map weekly, together with the child’s developmental stage for up to 12 weeks. The accuracy and consistency of data recording was externally validated in a random selection of cases by the research nurse.1 The same data were recorded on a standardised proforma when the abuse group were assessed by the medical child protection team. Full details of how bruises were recorded are available in previous publications.1 4 5

Bruising from immunisations or venepuncture and children with any clinical or social concerns for child maltreatment in the accidental and IBD group were excluded. Bruises on the shins, often deemed a universal finding among ambulatory children, were not consistently recorded by clinicians during child protection assessments and were excluded from each group.

Bruises were grouped into 18 locations1 4 (figure 1). Children were categorised into two developmental groups: pre-mobile (non-rolling, rolling over and sitting) and mobile (crawling, bottom shuffling, cruising or walking).

ANALYSIS

Comparative analyses were performed to determine whether the extent of bruising in the TEN locations had the potential to discriminate between bruises from abuse, IBD and accidents for pre-mobile and mobile children. The analysis was predicated on previous findings that both the distribution of bruises and the total number of bruises varied between the three groups of children. Bruises recorded at each data collection were categorised according to the number in each of the TEN locations (head, face, arms, upper legs, hands, feet). Multilevel Poisson regression was used to analyse the number of bruises in TEN4 and non-TEN4 locations, quantifying how the average number of bruises in the two locations varied with study group and with the child’s developmental group. Using the statistical software R, generalised linear mixed models with a log link function were fitted. Interactions between study group and developmental group, and between study group and bruise location were allowed for, additionally including a random effect for each child’s general tendency to bruise (online supplemental appendix 1).

In our primary analysis of likelihood ratios (LRs), we used a standard approach for modelling correlated longitudinal data and included a random effect that allows for each child to have a different tendency to bruise. LRs were used to summarise the results of each model fit. A LR of ≥10 was considered strongly predictive, while a LR between 1 and 10 supported a small difference.

To determine whether using an age cut-off (as in TEN4) rather than pre-mobile versus mobile made any difference to the discriminatory power, the analysis was repeated for those <4 months old and those older.

To make a comparison with the original sensitivities and specificities for abuse quoted by Pierce et al, the TEN4 BCDR2 6 was applied to the collections in the abused group and the accidental group where at least one bruise was recorded for the whole study group and for those <48 months of age.

RESULTS

In total, 780 children provided 4211 data collections (table 1); 1175 collections in pre-mobile children, median age 5 months (IQR 3–6 months), and 3036 collections in mobile children, median age 26 months (IQR 13–42 months).

Frequency of bruises

Pre-mobile children in the accidental and IBD group rarely bruised, but once mobile they had frequent bruises (figure 2). By contrast, the abused pre-mobile children often had multiple bruises. The IBD and abused children showed the largest number of bruises overall. There was a wider variation between the number of bruises recorded at different time points on the same child for the IBD (range 0 to >40) than for accidental groups (range 0–10 bruises) per collection.

Distribution of bruises

Bruises to the torso were recorded in the pre-mobile IBD and abuse groups (figure 1). The IBD pre-mobile infants had more bruises on the upper arms, whereas the abuse group had more bruises to the cheeks, eyes and neck.

In the mobile group, bruises were commonly seen in the facial T (forehead, nose, upper lip, chin) across all three groups. The distribution of bruises in the mobile abused and IBD children were similar with bruises to the torso. However, the prevalence of bruises to the cheeks, neck, ears and eyes was greater among the abused children than those with IBD. The latter had more bruises to the lower arms.

Model fit

Relative to the accidental group, both IBD and abuse groups exhibited significantly more bruising in TEN and non-TEN locations. Pre-mobile infants had significantly fewer bruises than mobile children, though this difference was much smaller in the

Table 1 Number of children, their gender and the number of data collections within the accidental, inherited bleeding disorders and abuse groups according to their independent mobility

<table>
<thead>
<tr>
<th></th>
<th>Accidental</th>
<th>Inherited bleeding disorder</th>
<th>Abused</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of children</td>
<td>328</td>
<td>106</td>
<td>346</td>
<td>780</td>
</tr>
<tr>
<td>Male</td>
<td>145</td>
<td>81</td>
<td>208</td>
<td>434</td>
</tr>
<tr>
<td>Female</td>
<td>188</td>
<td>15</td>
<td>138</td>
<td>321</td>
</tr>
<tr>
<td>Unknown</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>No of collections</td>
<td>2568</td>
<td>1301</td>
<td>346</td>
<td>4211</td>
</tr>
<tr>
<td>Pre-mobile</td>
<td>932</td>
<td>136</td>
<td>107</td>
<td>1175</td>
</tr>
<tr>
<td>Mobile</td>
<td>1636</td>
<td>1165</td>
<td>239</td>
<td>3036</td>
</tr>
<tr>
<td>No of collections per child (median and range)</td>
<td>8 (1–24)</td>
<td>12 (1–36)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
IBD and abuse groups. In all groups, there were fewer bruises in TEN locations than in non-TEN locations, but this difference was less pronounced among the IBD and abuse groups.

There was between-child variation in the amount of bruising (SD 0.87). This captures the idea that some children exhibit more bruises than others. An extreme child in the accidental group (at the 97.5th percentile in terms of their tendency to bruise) exhibits roughly the same average number of bruises as the median child in the abuse group (figure 2).

Likelihood ratios

A pre-mobile child with a single bruise was more likely to have been abused or have IBD than to be accidentally injured. The more bruises that a child had, the higher the likelihood of abuse/IBD versus accident. Once a child had two or more bruises, the LRs significantly favoured abuse over IBD. The presence of bruises in the TEN locations was more indicative of abuse than IBD (table 2). Using an age cut-off of 4 months, the LRs showed a similar result. While the LRs using the age cut-off were lower than using the mobility categorisation, the differences did not reach statistical significance. (online supplemental appendix 2)

An isolated bruise in a TEN location in a mobile child was not supportive of abuse or IBD. For mobile children with more than one bruise, at least one of which was in a TEN location, the LRs favouring abuse or IBD over accidents increased (table 3). Using an age cut-off of 4 months instead of our mobile categorisation, the overall trend was the same. However, for children older than
4 months of age, the LR s for abuse/IBD against accidental injuries were greater, and thus the power to discriminate improved slightly (online supplemental appendix 2).

Applying the TEN4 BCDR to this dataset for the collections in 300 abused children and 760 collections among the accidental group where the child had at least one bruise, the estimated sensitivity for abuse was 69% (95% CI 63% to 74%) and specificity was 72% (95% CI 69% to 75%). When a developmental cutoff was applied, these values were 73% (95% CI 67% to 77%) and specificity fell to 69% (95% CI 66% to 72%), respectively. To mitigate the effect that collections made on the same child may not be independent, the calculations were repeated but only applied to the first collection in the accidental group that had any bruising; the estimated sensitivity was unaffected and the estimated specificity fell to 65%. To make a more direct comparison with the original TEN4 derivation study,2 we applied the TEN4 rule to children less than 48 months of age: the estimated specificity fell to 69% (95% CI 63% to 74%) and specificity for abuse was 69% (95% CI 66% to 72%), respectively.

DISCUSSION

Any bruise in a pre-mobile child was strongly predictive of abuse/IBD and bruising in the TEN locations favoured abuse/IBD in mobile children who had more than one bruise recorded. When multiple bruises were recorded in the TEN locations, the likelihood of abuse over IBD increased. However, the poor discrimination between abuse and IBD reiterates the need for a haematological investigation in a child with concerning bruising.

The strong association between any bruise in a TEN location only was more likely to be found in the accidental than the abuse group and the TEN bruise distribution had no power to discriminate either abuse or IBD from accidental injury in these children.

The TEN4 categorisation worked equally well using a developmental cut-off of pre-mobility or an age cut-off of <4-month-olds. While the use of an age cut-off is attractive in an emergency department setting, we have always focused on mobility, as bruising frequency and distribution are related to the level of motor development and as ‘those who don’t cruise, rarely bruise’.5

As with any clinical tool, the BCDR is not designed as a diagnostic tool but as a prompt for clinicians when deciding whether to investigate a child further. When a child presents...

Table 2 Likelihood ratios (to 2 significant digits) for the number of bruises within the TEN (torso, ears and neck) locations for pre-mobile children: abuse vs accidental injury, inherited bleeding disorders (IBD) vs accidental injury, abuse vs IBD

<table>
<thead>
<tr>
<th>Number of bruises in TEN sites</th>
<th>Number of bruises elsewhere</th>
<th>Abused vs accidental estimated LR (95% CI)</th>
<th>IBD vs accidental estimated LR (95% CI)</th>
<th>Abused vs IBD estimated LR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.17 (0.11 to 0.24)</td>
<td>0.51 (0.38 to 0.63)</td>
<td>0.34 (0.21 to 0.53)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4.9 (3.2 to 6.9)</td>
<td>6.8 (4.6 to 9.1)</td>
<td>0.72 (0.55 to 0.89)</td>
</tr>
<tr>
<td>0</td>
<td>2+</td>
<td>208 (104 to 376)</td>
<td>109 (40 to 240)</td>
<td>1.9 (1.2 to 3.2)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11 (7.3 to 16)</td>
<td>8.8 (5.7 to 12)</td>
<td>1.3 (1.0 to 1.6)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>313 (152 to 544)</td>
<td>118 (45 to 228)</td>
<td>2.7 (1.8 to 4.1)</td>
</tr>
<tr>
<td>1</td>
<td>2+</td>
<td>1300 (4080 to 33 600)</td>
<td>1890 (407 to 6110)</td>
<td>7.1 (2.7 to 18)</td>
</tr>
<tr>
<td>2+</td>
<td>0</td>
<td>890 (444 to 1660)</td>
<td>160 (57 to 362)</td>
<td>5.6 (3.2 to 9.1)</td>
</tr>
<tr>
<td>2+</td>
<td>1</td>
<td>25 000 (7900 to 59 000)</td>
<td>2100 (454 to 7100)</td>
<td>11.7 (4.7 to 27)</td>
</tr>
<tr>
<td>2+</td>
<td>2+</td>
<td>1 100 000 (210 000 to 3 600 000)</td>
<td>34 000 (4200 to 180 000)</td>
<td>31 (7.2 to 130)</td>
</tr>
</tbody>
</table>

2+, two or more bruises; LR, likelihood ratio.

Table 3 Likelihood ratios (to 2 significant digits) for the number of bruises within the TEN locations for mobile children: abuse vs accidental injury, inherited bleeding disorders (IBD) vs accidental injury, abuse vs IBD

<table>
<thead>
<tr>
<th>Number of TEN bruises</th>
<th>Number of bruises elsewhere</th>
<th>Abused vs accidental estimated LR (95% CI)</th>
<th>IBD vs accidental estimated LR (95% CI)</th>
<th>Abused vs IBD estimated LR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.04 (0.02 to 0.06)</td>
<td>0.26 (0.19 to 0.34)</td>
<td>0.16 (0.09 to 0.28)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.22 (0.14 to 0.30)</td>
<td>0.83 (0.71 to 0.95)</td>
<td>0.26 (0.17 to 0.38)</td>
</tr>
<tr>
<td>0</td>
<td>2+</td>
<td>2.62 (2.0 to 3.3)</td>
<td>3.9 (3.0 to 4.9)</td>
<td>0.68 (0.56 to 0.76)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.50 (0.31 to 0.71)</td>
<td>1.1 (0.87 to 1.3)</td>
<td>0.47 (0.29 to 0.66)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.6 (1.9 to 3.5)</td>
<td>3.4 (2.8 to 4.2)</td>
<td>0.78 (0.56 to 0.93)</td>
</tr>
<tr>
<td>1</td>
<td>2+</td>
<td>31 (24 to 44)</td>
<td>16 (11 to 25)</td>
<td>2.0 (1.5 to 2.6)</td>
</tr>
<tr>
<td>2+</td>
<td>0</td>
<td>9.5 (6.2 to 14)</td>
<td>4.9 (3.8 to 6.6)</td>
<td>1.9 (1.5 to 2.4)</td>
</tr>
<tr>
<td>2+</td>
<td>1</td>
<td>50 (36 to 71)</td>
<td>16 (11 to 25)</td>
<td>3.2 (2.5 to 4.1)</td>
</tr>
<tr>
<td>2+</td>
<td>2+</td>
<td>600 (360 to 1100)</td>
<td>73 (42 to 156)</td>
<td>8.2 (4.9 to 13)</td>
</tr>
</tbody>
</table>

2+, two or more bruises; TEN, torso, ears, neck.
for assessment of bruising, a diagnosis of abuse cannot be made from the pattern of bruising alone. These data show that the numbers of bruises have relevance as do other clinical diagnoses. The comprehensive assessment of these children must take account of the explanation for bruising in the context of wider scientific evidence, much of which has been described in systematic reviews and in more recent publications. Hibberd et al explored eight causal mechanisms of accidental bruising in children attending the emergency department and showed that, with the exception of falls downstairs or sports injuries, the majority of reported incidents involved a single bruise, and there were sites such as genitalia, ears or neck that were rarely affected. Accidental bruises from a single incident rarely are multiple, occur in clusters or are seen in pre-mobile babies. TEN4 is easy to memorise and simple to use. However, it was derived from a small population with significant trauma warranting admission to PICU but subsequently tested and modified in the emergency department. As it is now widely applied in practice, across multiple clinical settings, it was pertinent to explore its potential in a community sample, and those with IBD.

When the TEN4 BCDR itself was applied to the collections from abused and accidentally injured children where at least one bruise was recorded, estimated sensitivity and specificity for abuse were both lower than when calculated by the Pierce group. This is likely to be due to the different population used for the accidental group, where the children sustained their bruises from everyday activities and minor injuries. There was no statistically significant difference between these estimations when applied to children <48 months of age (as included in the original derivation study for TEN4) or to the extended age range of this study suggesting that TEN4 may be equally applicable to children up to 6 years of age.

The strength of this study is its size, in terms of the number of data collections, and datasets representative of children from all three groups. While the difference in location of bruising between abused and non-abused children of different ages has long been recognised, TEN4 is the only algorithm that we are aware of to be applied to a combination of alerting sites and age in clinical practice. The security of diagnosis relied on the assessment of the likelihood of abuse at multidisciplinary assessment based on all available information including any bruising that the child had; however, it is extremely unlikely that this would have included the items of interest namely the precise number or location of bruises within or outside of the combined TEN4 regions. Circular reasoning was further mitigated as the data were collected prior to the TEN4 rule publication. However, limitations include the fact that we used repeated recording of bruises from children over time for IBD and accidental cases and there are issues to consider regarding individual child factors. The age range of children included is broader than that studied originally for TEN4 or to the extended age range of this study suggesting that TEN4 may be equally applicable to children up to 6 years of age.

CONCLUSION

A simple, accurate and easy-to-apply BCDR to identify children at risk of abuse has the potential to save lives. TEN4, developed and validated in a hospital setting, is now being used in a wider population, including primary care and non-trauma settings. Therefore, it is vital that it is tested among these populations. This study has reiterated that any bruise in a pre-mobile child, or in the TEN locations in a mobile child with more than one bruise, should prompt investigations. It does not automatically imply the child has been abused. TEN4 did not discriminate those with an IBD from abuse, and screening for IBD must always be considered.
Original research