The role of magnetic resonance imaging in the assessment of suspected extrinsic tracheobronchial compression due to vascular anomalies

Tass H Malik, Iain A Bruce, Vivek Kaushik, David J Willatt, Neville B Wright* & Michael P Rothera

Departments of Otorhinolaryngology and *Radiology
Central Manchester and Manchester Children’s University Hospitals NHS Trust

Corresponding author:
Tass Malik
37 Glenside Drive
Wilmslow
Cheshire
SK9 1EH

Telephone: 07740855942
Email: Tasshm@aol.com

Keywords: Vascular anomalies, vascular ring, vascular compression, tracheal compression, magnetic resonance imaging

Abbreviations:
Magnetic resonance imaging (MRI), dynamic laryngotracheobronchoscopy (DLTB)
Abstract

Aims: To evaluate the role of magnetic resonance imaging (MRI) in the assessment of children with suspected extrinsic tracheobronchial compression due to vascular anomalies.

Design: Retrospective case note review.

Settings: Tertiary referral centre: The Royal Manchester Children’s University Hospital.

Methods: Twenty-nine children who underwent dynamic laryngotracheobronchoscopy (DLTB) and were found to have a clinical suspicion of extrinsic tracheobronchial compression were evaluated. All of these children subsequently underwent thoracic MRI within 10 days. The findings on endoscopy were compared to those of MRI, and where performed, echocardiography, aortography and surgery.

Results: There were 17 males and 12 females, with a mean age of 5 months (range: 28 weeks gestation to 60 months). The most common presenting features were stridor and cyanotic episodes. MRI demonstrated abnormalities in 21 patients. There were 5 vascular rings (3 double aortic arches and 2 right aortic arches) and 11 cases of innominate artery compression. Other vascular anomalies noted included aberrant right subclavian artery and aneurysmal left pulmonary artery. Echocardiography was generally found to be unhelpful in the diagnosis of extra-cardiac vascular abnormalities. Angiography was subsequently conducted in 8 children and findings agreed with those demonstrated on MRI. Surgery was performed on all five vascular rings, 1 innominate artery compression and 1 aneurysmal left pulmonary artery. Surgical findings were also compatible with the pre-operative MRI.

Conclusions: This study demonstrates the successful use of MRI as the initial imaging modality in endoscopically suspected extrinsic vascular compression of the upper airway. It enables accurate delineation of vascular anomalies and unlike aortography is non-invasive and does not require the use of contrast media.
Introduction

Thoracic vascular anomalies are potentially life threatening but treatable causes of tracheobronchial obstruction in infancy. The resultant airway compromise occurs as a direct consequence of physical external compression of the airway lumen but may also reflect the subsequent development of secondary tracheobronchomalacia (1). When symptomatic, these patients may present with stridor (commonly misdiagnosed as asthma), croup-like cough, recurrent lower respiratory tract infections, dysphagia and episodic apnoea. As a consequence of the airway obstruction, the patient’s ability to clear secretions from the airways distal to the level of compression may be compromised. The resulting accumulation of secretions increases both the risk of secondary infection and accompanying inflammation, which may result in airway irritation and a croup-like cough (2).

Thoracic magnetic resonance imaging (MRI) is becoming increasingly popular as the first line imaging modality in the diagnostic workup of paediatric airway obstruction suspected to be due to vascular anomalies of the aortic arch system and its major branches (2-5). Advocates of MRI maintain that it is both non-invasive and can accurately differentiate the various forms of vascular tracheobronchial compression from other causes of respiratory obstruction such as foreign bodies, haemangiomas, bronchogenic cysts and mediastinal tumours (2 6). It also avoids the use of ionising radiation.

This study describes our experience of children seen at The Royal Manchester Children’s University Hospital over a two-year period, who were found to have a clinical suspicion of vascular airway compression at dynamic laryngotracheobronchoscopy (DLTB) and subsequently underwent MRI.

Methods

A database review at our paediatric tertiary referral centre was undertaken. Cases were identified where there had been a clinical suspicion of extrinsic tracheobronchial vascular compression recorded at DLTB. Typically this suspicion would involve a pulsatile indentation or constriction of the tracheobronchial wall with reduction of the cross-sectional area at characteristic sites and configurations described later. The DLTB was performed using a rigid laryngoscope through which a 2.7 mm 0° rigid endoscope (Hopkin’s rod) was introduced. By performing a dynamic procedure any malacic segments would also become apparent. The level of anaesthesia was such that it prevented coughing but allowed for spontaneous ventilation using nasopharyngeal intubation, with the end of the tube situated in the hypopharynx. The vocal folds were sprayed with local anaesthetic spray.

These children then routinely underwent thoracic MRI (T1 weighted, Echo Planar Imaging in three orthogonal planes (Spin-echo with EPI) and additional Turbo Field Echo transverse images to provide angiographic information) within 10 days of the DLTB.
Sedation was given during MRI by means of oral chloral hydrate 100mg/kg (maximum 2.0 g) with or without rectal paraldehyde 0.3mls/kg for children weighing ≤20kgs, and oral quinalbarbitone (secobarbital) 10mg/kg (maximum 200 mg) for those weighing >20kgs.

A case note review was conducted and the findings on endoscopy were then compared to those of MRI, and where performed, echocardiography, aortography and surgery.

Results

We identified 29 cases where children had a clinical suspicion of external vascular compression on DLTB. All subsequently underwent thoracic MRI as is the policy at our unit. There were 17 males and 12 females, with a mean age of 5 months (range: 28 weeks gestation to 60 months). The presenting features are summarized in Table 1.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stridor</td>
<td>20 (69%)</td>
</tr>
<tr>
<td>Cyanotic episodes</td>
<td>9 (31%)</td>
</tr>
<tr>
<td>Apnoeic episodes</td>
<td>6 (21%)</td>
</tr>
<tr>
<td>Choking episodes</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>Recurrent chest infections</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Dysphagia / regurgitation</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Table 1. Presenting symptoms.

Of the 29 patients, MRI was normal in 8 children (27.5%). None of the patients with normal magnetic resonance scans were later diagnosed as having vascular compression, either clinically or using other radiological modalities, during the follow-up period of at least 18 months. Anomalies found on MRI are shown in Table 2, and depicted in figures 1-8.
<table>
<thead>
<tr>
<th>Findings on MRI</th>
<th>No. of cases</th>
<th>Percentage</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innominate artery compression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20% tracheal compression</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-50% tracheal compression</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>50% tracheal compression</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38%</td>
<td>Figs.1, 2</td>
</tr>
<tr>
<td>Complete vascular ring:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double aortic arch</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right aortic arch</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17%</td>
<td>Figs.3, 4, 5, 6</td>
</tr>
<tr>
<td>Aberrant right subclavian artery</td>
<td>1</td>
<td>3.5%</td>
<td>Figs.7, 8</td>
</tr>
<tr>
<td>Aneurysmal left pulmonary artery</td>
<td>1</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Right bronchogenic cyst</td>
<td>1</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Intrinsic tracheal stenosis</td>
<td>1</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Primary tracheomalacia</td>
<td>1</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>No abnormality</td>
<td>8</td>
<td>27.5%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Findings on MRI.

Echocardiography was performed in 19 of the 29 cases. Apart from hinting at one case of a right aortic arch, and another of left pulmonary artery aneurysm, this investigation was found to be unhelpful in the diagnosis of extra-cardiac vascular anomalies. Barium swallow was performed in 2 of the 5 cases later diagnosed as vascular rings: one was correctly diagnosed as a right aortic arch, but the other failed to visualize a double aortic arch.

Eight of the twenty-one patients with abnormalities identified on MRI went on to have aortography. The findings at aortography were in agreement with the MRI findings in all 5 vascular rings, 2 cases of innominate artery compression (causing >50% tracheal compression) and the case of aneurysmal left pulmonary artery.
Surgery was performed in seven cases, comprising all five vascular rings, one innominate artery compression (causing >50% tracheal compression) and the aneurysmal left pulmonary artery. The findings at operation were in concordance with the pre-operative MRI in all cases.

Discussion

Developmental anomalies of the aortic arch and its branches have two effects on the upper airway. Firstly they cause direct extrinsic compression with reduction of the luminal area, and secondly they cause malacia because the airway wall weakens and becomes more compliant and collapsible. Mucociliary clearance of secretions can also be impaired, compounding the functional airway obstruction and leading to infections and chronic cough (7).

The most common presenting complaint in our series was stridor, which occurred in 69% of patients, in agreement with the literature (2 8 9). Fifteen patients presented with either episodic apnoea or cyanotic episodes. Such episodes are also referred to as reflex apnoea or ‘death spells’ (9). It has been hypothesised that such episodes of respiratory arrest result from tracheal irritation at the site of compression (10).

Airway obstruction resulting from **innominate artery compression** (IAC) (see figs 1&2 on the ADC website) may result in either an expiratory or biphasic wheeze or stridor. Patients may also present with a ‘croupy’ barking cough, reflex apnoea and recurrent lower respiratory tract infections (11). Any compromise associated with IAC is often self-limiting and improves with increasing age (11). At DLTB a right anterior compression is seen above the carina, synchronous with the pulse. IAC has been shown to be associated with oesophageal atresia and severe gastro-oesophageal reflux disease (5). IAC with up to 90% tracheal compression can usually be treated expectantly, but severe or complicated cases require aortopexy whereby the innominate artery is secured to the posterior surface of the sternum thus relieving the anterior tracheal compression (9). Whilst MRI elegantly demonstrates IAC, it does not predict the need for surgical intervention (4): in our series only one child required aortopexy.

A **vascular ring** refers to an anomaly of the aortic arch system and its major branches that encircles and compresses the trachea and oesophagus (9 11). The most common symptomatic complete vascular ring is the double aortic arch (figs 3&4) followed by a right aortic arch in which the ring is completed by the ligamentum arteriosum (see figs 5&6 on the ADC website). The most common incomplete ring is an aberrant right subclavian artery (2 11). The complete rings tend to present earlier (9).

A **double aortic arch** (figs 3&4) is formed when the embryonic fourth aortic arches and dorsal aortic roots persist and remain patent on both sides (9 14). The resultant ring is tight and symptoms usually begin at birth. The stridor is biphasic in nature and exacerbated by feeding. Recurrent respiratory tract infections and cyanotic episodes are common. Significant dysphagia is not usually seen until solid food is introduced (2 11).
One of the arches is usually of larger calibre, the right arch usually predominating (2 5 6 8 11) as demonstrated in our three cases. The findings on endoscopy are a concentric or triangular compression surrounding the trachea, main bronchi and oesophagus. Double aortic arches are treated by ligation and division of the smaller, less dominant arch, which in 80% of cases corresponds to the left aortic arch (9).

The development of the right aortic arch (see figs 5&6 on the ADC website) is similar to the double aortic arch but the left arch regresses (9). Several variations exist including right aortic arch with aberrant left subclavian artery and mirror-image branching (3 6 15). Unlike a double aortic arch anomaly, a right aortic arch with mirror-image branching is often associated with congenital heart disease such as Tetralogy of Fallot or pulmonary atresia (6).

Persistence of the dorsal segment of the right aortic arch results in an aberrant origin of the right subclavian artery (see figs 7&8 on the ADC website). The latter now passes behind the trachea and oesophagus, indenting the oesophagus, to reach the right upper limb (2 16). This anomaly is not a true complete vascular ring and is often asymptomatic. It is the most common congenital arch anomaly occurring in 0.4 – 2.3% of the population (17). Significant airway compromise is unlikely but this anomaly can be associated with dysphagia (2 8 11 16).

A pulmonary artery sling is produced as a result of an anomalous origin of the left pulmonary artery. In this anomaly the normal left pulmonary artery is absent and the resultant aberrant collateral vessel arises from the right pulmonary artery, tightly encircling the right bronchus and passing between the trachea and oesophagus. Significant airway compromise is common and therefore presentation occurs shortly after birth (9). Tracheomalacia and tracheal stenosis may also result (5).

Non-surgical management has been shown to be effective in selected mildly symptomatic cases of vascular tracheobronchial compression, especially innominate artery compression (4 18). Outcomes following surgical treatment are good, with complete resolution of symptoms in most cases (2 9 14 19).

Traditionally the gold standard investigation has been aortography with its inherent risks associated with exposure to ionising radiation and the use of contrast media, as well as the potential complications related to the puncture site. Other imaging modalities have been advocated in the investigation of suspected vascular tracheobronchial compression, such as contrast imaging of the oesophagus, echocardiography, and computed tomography (CT) (1 8 9 16 20).

A high degree of clinical suspicion remains the most important factor in the diagnosis of paediatric airway obstruction resulting from vascular compression. Our preferred diagnostic strategy for cases of airway obstruction involves the primary use of DLTB. It provides an unrivalled view of the entire airway, has the capability to diagnose a variety of causes of airway obstruction (e.g. laryngomalacia, vocal cord palsy and subglottic haemangioma), and permits a functional assessment of airway compromise. At present,
technology is not advanced enough for MRI to be able to perform useful real-time ‘virtual endoscopy’ and thus be considered a viable first line alternative.

The combination of DLTB and MRI proved to be a robust method of diagnosis in all the patients in this study. This study supports the first line use of MRI to investigate all endoscopically suspected extrinsic vascular compression of the upper airway. We found that the T1 EPI “black blood” sequence to be the most useful sequence at our institution. If MRI confirms an anomaly which would require surgical intervention or is indeterminate, then one should proceed to angiography.

Competing interests
All authors declare that there are no competing interests

Acknowledgements
none

Sponsors
none

Licence statement
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article to be published in Archives of Diseases in Childhood editions and any other BMJPL products to exploit all subsidiary rights, as set out in our licence (http://adc.bmjournals.com/misc/ifora/licenceform.shtml).
Figure legends

Figure 1
MRI scans of innominate artery (IA) compression of the trachea.
 a. T1 EPI sagittal image demonstrating 50% reduction in antero-posterior tracheal diameter (arrow) at the origin of the IA from the aortic arch.
 b. T1 EPI coronal image demonstrating normal origin of the IA from the aortic arch (arrow).

Figure 2
Diagrammatic representation of innominate artery (IA) compression of the trachea.
(RSA=right subclavian artery, RCCA= right common carotid artery, LCCA= left common carotid artery, LSA= left subclavian artery, LA= ligamentum arteriosum, T= trachea, E= oesophagus, Ao= aortic arch, PA= pulmonary artery).

Figure 3
MRI scan of double aortic arch. Coronal T1 images.
 a. Origin of the right and left common carotid arteries from their respective arches (arrows)
 b. Right and left arches demonstrated either side of the trachea (arrows)
 c. Origin of the right and left subclavian arteries from their respective arches (arrows).
 d. Both arches join to form a single descending aorta just to the right of the midline (arrow).

Figure 4
Diagrammatic representation of double aortic arch. (RAo= right aortic arch, LAo= left aortic arch).

Figure 5
MRI scan of right aortic arch with aberrant left subclavian artery, T1 EPI coronal image. The right aortic arch is seen indenting the right side of the trachea (arrow).

Figure 6
Diagrammatic representation of right aortic arch, the vascular ring being completed by the ligamentum arteriosum and retro-esophageal left subclavian artery.

Figure 7
MRI scan of aberrant right subclavian artery. T1 EPI coronal images.
 a. The trachea is of normal caliber (arrow).
 b. The aberrant origin of the right subclavian artery from the descending aorta is demonstrated (arrow).

Figure 8
Diagrammatic representation of aberrant right subclavian artery.
References

