Background TFO of breast milk (BM) overcomes the uncertainty of macronutrient intake in fixed dose fortification (FDF) resulting from natural variation in breast milk and improves growth of VLBW infants.

Objective To study variation of macronutrient intake and energy ratios when TFO is done using four different milk fortifiers and based on various frequencies of milk measurements.

Study design Ten infants, GA: 26.1 ± 1.3 wks, BW: 890 ± 210 g. Daily measurements (n = 210) of native BM’s fat, protein (NIR milk analyzer), and lactose (UPLC-MS/MS) levels provided the basis for model calculation to add fat, protein and carbohydrates using modular products after FDF with either FM85, FMS, Enfamil, or Similac to meet ESPGHAN recommendations. BM measurement frequencies were 7/wk, 5/wk, 3/wk, 2/wk, 1/wk, and 0/wk (only FDF).

Results Measurement 2/wk increased mean macronutrient intake and day-to-day variation was not higher compared to native BM. Day-to-day variation decreased with increasing frequency of milk analysis (Fig). After adding FDF mean carbohydrate level already exceeded in 3 fortifiers and median fat level in 1 fortifier leading to higher calorie intake than target levels.

TFO 7/wk achieved macronutrient levels close to target when routine fortifier was composed with 1.1 g protein/dL (no fat, no CHO) whereas for measurements 1–2/wk, it was achieved with composition of fat 0.4g/dL, protein 1.2g/dL and carbohydrate 1.1g/dL.

Conclusions Measurements of macronutrient intake 1–2/wks might provide a reasonable balance between workload and clinical outcome. Due to different composition of fortifiers, either target values for macronutrients or composition of fortifier for use with TFO needs to be reconsidered in order to achieve recommended intake.
Methods In a prospective randomised study, infants with BW 750–1250 grams (g) were assigned to a dietary group. All infants received mother’s own milk or donor HM, with donor HM-derived fortifier. Cream group also received a HM-derived cream supplement if the HM tested < 20 kcal/oz (infrared HM analyzer). F/U continued until 36 weeks PMA. Primary outcomes included growth velocities and incidences of NEC and sepsis. Non-inferiority was established if the lower bound of weight velocity exceeded -3 g/kg/day.

Results There were no differences in demographics except for race (p = 0.02). The one-sided 95% lower bound of the confidence interval for the difference in mean velocity (cream-control) was 0.38 g/kg/day.

Conclusions Cream group infants had better weight and length velocity. HM cream-derived supplement should be considered as a supplement to an exclusive HM-based diet.

The Bengt Robertson Award

O-125 MESENCHYMAL STEM – OR STROMAL CELLS FROM THE DEVELOPING HUMAN LUNG ARE PERTURBED BY HYPEROXIA

1MA Möbius, 2S Kaß, 3HK Ohls, 4M Rüdiger, 5H Thébaud. 1Spratt Centre for Stem Cell Research Ottawa/Ontario/Canada, Universitätsklinikum "Carl Gustav Carus", Dresden, Germany; 1Neonatology and Pediatric Critical Care Medicine, Universitätsklinikum "Carl Gustav Carus", Dresden, Germany; 2Department of Pediatrics/Division of Neonatology, University of New Mexico, Albuquerque, USA; 3Spratt Centre for Stem Cell Research, University of Ottawa and Children’s Hospital of Eastern Ontario, Ottawa / Ontario, Canada

Support (Bengt-Robertson-Award): Charles-Christopher Roehr.

Abstract O-125 Table 1 Comparison of growth velocities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cream group</th>
<th>Control group</th>
<th>p-value (two sample t-test with unequal variances)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 39</td>
<td>n = 39</td>
<td></td>
</tr>
<tr>
<td>Length velocity (cm/wk)</td>
<td>1.03 ± 0.33</td>
<td>0.83 ± 0.41</td>
<td>0.02</td>
</tr>
<tr>
<td>Head circumference (cm/4wk)</td>
<td>0.99 ± 0.19</td>
<td>0.84 ± 0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>Weight velocity (g/kg/day)</td>
<td>14.0 ± 2.5</td>
<td>12.4 ± 3.9</td>
<td>0.03</td>
</tr>
<tr>
<td>Weight velocity from regained BW (g/kg/day)</td>
<td>15.7 ± 2.5</td>
<td>13.7 ± 4.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Abstract O-125 Figure 1 Proliferation and Colony-formation of human fetal lung MSCs depends on oxygen tension

Oct-4 and Sox2, proliferated and switched cytokine secretion profiles towards a pro-fibrotic, pro-inflammatory phenotype. Alterations in the composition of the extracellular matrix were observed. Conversely, MSCs from the umbilical cord secreted high amounts of anti-fibrotic and lung-protecting proteins like PGE2 and stanniocalcin-1.

We conclude that the physiological function of resident lung MSCs is affected by relative and absolute hyperoxia, suggesting a key role of these cells in the immature lung responding to extrauterine oxygen conditions.

Support (Bengt-Robertson-Award): Charles-Christopher Roehr.

End-of-life and Quality of Life

O-126 PARENTS’ EXPERIENCE OF FOLLOW-UP CONVERSATIONS IN THE PEDIATRIC INTENSIVE CARE UNIT (PICU) AFTER DEATH OF A CHILD

L Jakobsen, HK Hansen, HL Brink, AK Thomsen, E Laerke. Department of Anaesthesiology- and Intensive Care, Odense University Hospital, Odense, Denmark

Background Approximately 4% of the children admitted to the PICU at Odense University Hospital, Denmark, dies every year. Parents are invited routinely for a multidisciplinary follow-up conversation in the PICU 4–8 weeks after the child’s death. There are no previous studies on parents’ experiences of these follow-ups in Denmark.

Aim To identify parents’ experience of the follow-up conversation and to investigate whether it is adequate for the needs of parents for a follow-up after their child’s death in the PICU.

Methods Semi-structured interviews with 6 pairs of parents 2-12 weeks after the follow-up conversation. The interviews were held in their own homes on the parents’ request. Data was analysed using Malteruds’ qualitative approach.

Results The analysis revealed the following themes: The way back to the PICU

Certainty and clarity
Close and known relationships
Completion of the stay in the PICU

Conclusions The parents were experiencing nervousness before the follow-up conversation, but were all pleased to have participated in these follow-ups. It was meaningful to the parents that the follow-up conversation was interdisciplinary, since it was possible to get answers to questions both about treatment and care. It was important that the staff involved in the follow-up conversation was the same that had been present through the hospitalisation and at the time of death of the child. It was very important that parents were invited to the follow-up conversation. Parents experienced the follow-up conversation as being a