has been recently related to a diffuse brain injury pattern. This study aims to analyse the relationship of total and regional CC volumes with intelligence and motor impairment severity in dyskinetic CP.

Methods 15 subjects (age range, 12–34) with dyskinetic CP and signs of perinatal asphyxia underwent an MRI. CC total, anterior, central and posterior volumes were calculated (Figure 1). The intelligence and motor scales most commonly used in CP were administered.

Results The CC total volume and most of its parts were related to intelligence and motor measures (Table 1).

Conclusions Total CC volume may be indicative of intelligence and motor status in dyskinetic CP. Regionally, the posterior part of the CC is not found to be related to motor function. This result agrees with the fact that premotor and sensorimotor fibres are located more posteriorly than previously thought.

New Concepts In Neonatal Sepsis

O-074 THE RELATIONSHIP BETWEEN MULTISITE NIRS-MEASUREMENTS AND ROUTINE HAEMODYNAMIC MEASUREMENTS IN PRETERM INFANTS WITH CLINICAL SEPSIS

ME van der Laan, TE Schat, AF Bos, EMN Koop. Division of Neonatology, Beatrix Children’s Hospital University Medical Center Groningen, Groningen, Netherlands

Background Multisite Near-infrared spectroscopy (NIRS) monitoring may help to detect circulatory failure in preterm infants. The aim of this study was to assess the correlation between multisite NIRS-measurements and routine haemodynamic measurements in preterm infants with clinical sepsis.

Methods Prospective exploratory cohort study in which preterm infants with clinical sepsis.

Background Heating and humidification of inspired gas is routine during neonatal non-invasive respiratory support, but little is known about the effects of different techniques on temperature and humidity in the upper airway.

Method Eight non-invasive respiratory support modes were applied to a neonatal manikin, in an incubator set to 34°C with relative humidity (RH) 60% (approximate normal upper airway conditions). Continuous positive airway pressure (CPAP), high-flow nasal cannulae (HFNC), and low-flow nasal cannulae (LFNC) devices were tested. Except for unhumidified LFNC, set humidifier temperature was 37°C. Typically used pressures and gas flows were assessed. Temperature and RH in the manikin’s oropharynx were measured every 5 min for 30 min, using a thermohygrometer. Each variation was repeated 3 times.

Results Steady state was reached by 10 min. Median values from 10–30 min are shown below.

Conclusions Achieved oropharyngeal temperature and RH varied between devices. RH of 0.8% occurred during LFNC using unconditioned ‘dry’ gas. Most devices achieved temperatures >34°C and >80% RH. Bubble CPAP delivered by Hudson prongs resulted in an oropharyngeal temperature above body temperature, which could result in water condensation as gas cools in the airway.

Non-Invasive Ventilation – What is the Evidence?

O-077 MEASUREMENT OF RESPIRATORY MECHANICS AND THORACOABDOMINAL ASYNCHRONY INDICES IN NEONATES BY RESPIRATORY INDUCTANCE PLETHYSMOGRAPHY DURING NON-INVASIVE VENTILATION

S. Gekker, E. Sivieri, S. Abbas. Pediatrics Division of Neonatology, Pennsylvania Hospital and Children’s Hospital of Philadelphia University of Pennsylvania, Philadelphia, USA

Background Measurement of respiratory mechanics during non-invasive ventilation (NIV) precludes use of the traditional airway flow sensor. Increasing use of NIV in premature infants necessitated novel instrumentation for measuring airflow without interfering with the nasal/oral interface. Respiratory inductance plethysmography (RIP), in addition to providing chest wall motion analysis, may be used for volume and airflow measurements when properly calibrated.

Objective To develop an efficient RIP calibration technique to allow bedside measurement of respiratory mechanics and to validate it’s accuracy against traditional pneumotachometer (PNT) measurements while simultaneously computing thoracoabdominal asymmetry indices in premature infants.

Design/methods RIP ribcage and abdominal signals were recorded simultaneously with facemask PNT signals. RIP was calibrated by qualitative diagnostic calibration and multiple