and thrombosis due to blood-material contact. Specifically the ATH was attached to the PDMS using dopamine as a ‘bio-glue’.

Materials and methods PDMS discs were incubated in a solution of dopamine hydrochloride and then in ATH solution. A separate set of PDMS discs were justed incubated in ATH. Uptake of ATH and adsorption of antithrombin (AT) from plasma (a measure of anticoagulant activity) to the various surfaces was measured using 125I-labelled ATH and AT. Stability of ATH on surfaces was evaluated by measuring residual radioactivity after incubation in blood.

Results ATH uptake on PDMS was higher with dopamine as glue (Fig. 1), ~74% of the original ATH was lost from PDMS +ATH after 3 h in blood, whereas only ~30% was lost from PDMS+DOP+ATH.

The ATH surface with dopamine is adhesive, thus showed higher AT adsorption (42.3 ng/cm2) compared to PDMS (6.3 ng/ cm2), and therefore should have higher anticoagulant activity.

Conclusions An antithrombin-heparin complex (ATH) was attached to PDMS using dopamine as a bio-glue. The use of dopamine gave surfaces with higher concentration and greater stability of ATH. The bound ATH showed potential for anticoagulant activity through extensive adsorption of antithrombin from plasma.

Poster abstracts

PO-0760 RELIABILITY OF SINGLE-USE PEEP VALVES DURING MANUAL VENTILATION OF NEONATES

JC Hartung, G Schmalisch, CC Roede. Neonatology, Charité University Berlin, Berlin, Germany.

10.1136/archdischild-2014-307384.1399

Background and aim Current guidelines recommend self-inflating bags (SIB), flow-inflating bags and T-piece resuscitators for manual ventilation of neonates. They further recommend the use of PEEP. Using a SIB, PEEP can be provided by attaching a PEEP valve to the device. These valves are reusable items. However, several studies could show that multi-use PEEP valves could only deliver insufficient levels of PEEP and that their reliability was further decreased by repeated sterilisation cycles.

The aim of our study was to test whether single-use PEEP valves reliably delivered the set PEEP.

Methods Ten new single-use PEEP valves from 5 different manufacturers (2 valves each from Laerdal (5–20 cmH$_2$O), DROH (0–10 cmH$_2$O), Vital Signs (5–20 cmH$_2$O), medisize (5–20 cmH$_2$O), Ambu (0–20 cmH$_2$O)) were attached to an electromechanically driven SIB to ventilate a manikin simulating a 1 kg preterm infant (PIP 20 cm H$_2$O, RR 60/min). The delivered PEEP was measured and analysed.

Results The valves delivered a mean (SD) PEEP of 3.5 (1.9) cmH$_2$O when set to 5 cmH$_2$O and 5.6 (2.9) cmH$_2$O when set to 10 cmH$_2$O. One valve could not deliver any PEEP; the second valve from the same manufacturer could only deliver 0.0 (0.0) and 1.4 (0.0) cmH$_2$O when set to 5 and 10 cmH$_2$O, respectively.

Conclusion Single-use PEEP valves could be used as an alternative to multi-use items to avoid damage caused by repeated sterilisation procedures. However, they could not reliably deliver the set PEEP. Operators should be aware of the valves’ poor reliability and test them before each use.

PO-0761 CLINICAL AND EVOLUTIVE PECULARITIES OF THE BRONCHOPULMONARY DYSPLASIA AND WILSON-MIKITY SYNDROME IN PREMATURE CHILDREN

S. Sireva, R. Ermeuc, I. Piranu, D. Rotanu, E. Oineagra. Department of Pediatrics, State University of Medicine and Pharmacy, Chisinau, Moldova.

10.1136/archdischild-2014-307384.1400

Background Bronchopulmonary dysplasia (BPD) and Wilson-Mikity syndrome (WMS) are specific respiratory diseases in premature infants, and utilisation of advanced management techniques will increase the prognosis and life expectancy in children with BPD and WMS.

Aim To assess clinical features and impact of BPD and WMS on the appearance of chronic pulmonary diseases in premature children.

Methods The study presents the results of a clinical and evolutive analysis of 10 children with BPD and 4 with WMS that were born premature with a brith weight of 700–1400 g, gestational age 31.92 ± 2.28 weeks.

Results The comparative analysis showed clinical and explorative differences in children with BPD and those with WMS. Though the prematurity degree was similar, the onset of clinical signs in children with WMS was later comparing with those with BPD (9.5 ±2.37 vs 1.4 ± 0.14 days of life, p < 0.01). Respiratory symptoms in the first year of life were less persistent in children with WMS versus those with BPD, who still presented with suggestive imagistic sings (diffuse pulmonary nodular infiltrates accompanied by cystic changes and areas of hiperinflation). Pulmonary pathology progressed inchildren with BPD, causing death in 2 children at 3–5 months of life due to severe complication. In children with WMS, in evolution was favourable with fewer exacerbations, in 1 case with complete involution confirmed radiologically by the age of 1 year.

Conclusion BPD in premature children has high risks of progression into chronic pulmonary disease and death. In WMS the clinical signs appear later, are less severe and their evolution is more favourable.

PO-0762 VOLUME TARGETED VENTILATION – EVIDENCE TO PRACTICE?

E. Siemons, R. Dack, V. Venugopalan. Paediatrics, Sandwell and West Birmingham NHS Trust, West Bromwich, UK; 2Paediatrics, Sandwell and West Birmingham NHS Trust, Birmingham, UK; 3Neonatal, Sandwell and West Birmingham NHS Trust, Birmingham, UK.

10.1136/archdischild-2014-307384.1401

Background and aim Volume targeted ventilation when compared to pressure controlled ventilation has been shown to reduce death and chronic lung disease in ventilated preterm neonates. Our audit assessed whether ventilated neonates born at Birmingham City Hospital, UK were appropriately converted to volume targeted ventilation as per the departmental guideline.

Methods We collected retrospective data from all ventilated neonates born at Birmingham City Hospital, September 2012–August 2013. We identified 125 neonates, but collected data from 76. ‘Mechanical Ventilation in Neonates – Sandwell and West Birmingham Hospital NHS Trust Guideline’, May 2012 was our standard and we aimed to achieve 100% compliance.

Results Of the 76 neonates, 35 (46%) were excluded due to being transferred in or out of the unit. Of the remaining 41 (54%) neonates, 34% were switched to volume targeted
ventilation, 59% were not switched and 7% were started initially on volume targeted ventilation, 8.3% of neonates not switched to volume targeted ventilation had a documented reason for this, 28.6% of neonates changed to volume targeted ventilation were changed in accordance with our departmental guideline.

Conclusion This audit demonstrated poor compliance in switching suitable neonates to volume targeted ventilation. Those that are switched are rarely switched according to the guideline. There is inadequate documentation of the reason for not switching to volume targeted ventilation. These results emphasise the need for ongoing training and education on volume targeted ventilation for all neonatal staff to ensure that our neonates receive the optimum ventilatory care.

Abstract PO-0763 Table 1

<table>
<thead>
<tr>
<th></th>
<th>Inborn</th>
<th>Outborn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>Mean Gestational Age in weeks (range)</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Mean Birth Weight in grams (range)</td>
<td>810</td>
<td>830</td>
</tr>
<tr>
<td>Male/Female</td>
<td>45/36</td>
<td>44/34</td>
</tr>
<tr>
<td>Mean Ventilation Days (range)</td>
<td>22.8</td>
<td>27.3</td>
</tr>
<tr>
<td>Mean CPAP days (range)</td>
<td>37.8</td>
<td>38.6</td>
</tr>
<tr>
<td>Postnatal Steroid</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>Evidence of Pulmonary Hypertension</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total Deaths</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Home oxygen</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>Average length of stay (days)</td>
<td>107</td>
<td>116</td>
</tr>
</tbody>
</table>