ALTERATION OF ANTIOXIDANT DEFENSE STATUS IN MACROSOMIA

MC Smahi, HM Haddouche, MA Arbi. Department of Pediatrics and Neonatology, Faculty of Medicine Aboubekr Belkaid University, Tlemcen, Algeria; University of Tlemcen, Laboratory of Applied Molecular Biology and Immunology, Tlemcen, Algeria

Background and aims To investigate whether the anomalies affecting the antioxidant defenses could start at birth and to check the decrease in antioxidant defenses in macrominos newborns.

Methods Thirty macrosomic and 30 sex-matched control newborns were recruited for a retrospective case-control study at the Maternity of Tlemcen University Hospital (Algeria).

Results The serum plasma ORAC and albumin levels were significantly decreased in macrominos than in control newborns, yet no difference was observed after adjustment for weight. Additionally, serum concentrations of malondialdehyde and xanthine oxidase were significantly higher in macrominos than in controls before adjustment for weight. Moreover, macrominos was significantly associated with low levels of ORAC (OR = 4.96, 95% CI 1.2–20.55), albumin (OR = 2.25, 95% CI 0.41–6.12.48) and with high levels of MDA (OR = 10.29, 95% CI 2.02–52.36).

Conclusions Excessive weight could be a potential factor for decreased anti-oxidative capacity and increased oxidative stress.

DOING ERRORS AND CLINICAL IMPACT IN PRETERM INFANTS DUE TO FLOW RATE VARIABILITY IN MULTI-INFUSION THERAPY

RA Snijder, AMDE Timmerman, B Riphagen, P Lucas, PMA Lemmens, F van Bel, ACG Egberts. Medical Technology and Clinical Physics, University Medical Center Utrecht, Utrecht, Netherlands; Research, VSL Dutch Metrology Institute, Delft, Netherlands; Neonatology, University Medical Center Utrecht, Utrecht, Netherlands; Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands

Background and aims Almost all preterm infants on the NICU receive continuous intra-venous infusion therapy. Commonly, multiple pharmaceuticals are administered through one catheter (multi-infusion). Due to the mutual influence of infusion pumps, dosing errors can occur that may lead to adverse events. We designed an in vitro experiment to measure flow rate variability and dosing errors. Subsequently, possible clinical impact was investigated.

Methods We conducted an n = 3 experiment with 3 syringe pumps and disposables as used in our NICU. A clinically relevant medication schedule was simulated using laser dyes as substitutes for pharmaceuticals. Real-time, inline, absorption spectrometry was used to measure dye concentrations and, subsequently, analyse flow rate variability. After changing the flow rate we registered temporary dosing errors in the parallel pumps, in addition, we registered start-up delays. A one-compartment pharmacological model was used to investigate the clinical impact of these errors.

Results The significant temporary dosing errors were between 48.1% ± 12.9% and -32.5% ± 22.5% over- and under-dose respectively. Start-up delays were up to 0.71 ± 0.11 h. Our pharmacological model indicates that these dosing errors could lead to haemodynamic instability for commonly used inotropes.

Conclusions Potential clinical impact includes hypertension, hypotension and intraventricular haemorrhages. We conclude that applying multi-infusion with currently used NICU infusion setups results in dosing errors with potential clinical impact. It is advised not to combine high-alert medication on a mutual lumen or line. In addition, it is advised to raise awareness about these phenomena.

This study was co-funded by the EMRP.

THE BENEFICIAL EFFECTS OF BREASTFEEDING ON PARAMETERS OF ENDOTHELIAL DYSFUNCTION

A Wasilewska, K Taranta-Janusz, R Roszkowska, E Tenderenda-Banasiuk, J Michalak-Skuzek. Department of Pediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland

The purpose of this work was to investigate the association of serum asymmetric dimethylarginine (ADMA) and high sensitive C-reactive protein levels (hs-CRP) with duration of exclusive breastfeeding (BF) in children, and body composition.

Patients and methods The study group consisted of eighty eight patients aged median 12 months, (M – 42; F – 46), classified as never breastfed (NBF), or fully breastfed (BF). ADMA and hSCRP were measured by immunoenzymatic ELISA commercial kits and expressed in μmol/L and ng/mL, respectively. Body composition analysis was performed by bioelectrical impedance (BIA).