base excess before the onset of clinical signs and symptoms of sepsis indicate infection in the early diagnosis of neonatal sepsis.

Methods A total of 118 infants were enrolled. The infants were classified into two groups: group 1 (sepsis, n = 49) and group 2 (control, n = 69). Blood gas analysis investigated for screening of neonatal sepsis.

Results A total of 49 infants with neonatal sepsis and 69 healthy controls were enrolled. A comparison of markers of sepsis revealed C-reactive protein, interleukin-6 level to be significantly higher and pH, pCO2, HCO3 and base excess values to be significantly lower in newborns with sepsis compared healthy controls (p < 0.01). The optimum cut-off value in the diagnosis of neonatal sepsis was found to be -5 mmol/L for base excess. Sensitivity, specificity, positive predictive value and negative predictive value of this base excess cut-off for neonatal sepsis were 75, 91, 86 and 84% respectively.

Conclusions This is the first study to determine the relationship between the decrease value of base excess and early stage of neonatal sepsis. If the value of base excess < -5 mmol/L, without an underlying another reason, may need close follow up of infants for neonatal sepsis and it may help early diagnosis.

PO-0520 NEONATAL MENINGITIS DUE TO MORAXELLA OSLOENSIS; CASE REPORT AND REVIEW OF THE LITERATURE

S Arjunan, A Mittal, R Arora, M Patel. Paediatrics, Bedford Hospital, Bedford, UK

10.1136/archdischild-2014-307384.1164

Introduction Neonatal meningitis causes substantial morbidity and mortality and is commonly caused by GBS. Moraxella osloensis is an aerobic, gram-negative coccobacillus infrequently isolated from CSF. There is little published related to risk factors of M. osloensis infections in the paediatric population. We report a case of Moraxella meningitis a neonate and review of cases in children.

Case report A 2 day old neonate was referred for jaundice and bilirubin check. He was noted to be jaundiced and lethargic. He was born term complicated with maternal pyrexia and raised maternal inflammatory markers. He was discharged on day 1 following 12 h of satisfactory observation.

A full septic screen was performed on the baby in view of risk factor for sepsis. The biochemical work-up was suggestive of meningitis. The blood and CSF culture were negative; however the CSF PCR was positive for Moraxella osloensis.

He was treated with 3 week course of IV cefotaxime and discharged without any acute complications.

Discussion A PubMed search yielded 4 published cases of M. osloensis meningitis but none of them presented in the neonatal period. There was 1 published case of neonatal septicemia without meningitis, however there was no specific risk factor identified in any of these patients.

In conclusion, although M. osloensis meningitis is rare it may cause severe CNS infection in children we were able to definitely identify the species of the isolates only by using 16S rRNA gene sequencing and extended PCR must be performed on all babies presenting with possible meningitis.