Pre-BT ACA peak systolic (0.37 m/s) and mean velocity (0.19 m/s) decreased significantly post-BT (0.32 and 0.16 respectively; p < 0.01). There was no significant change in RI (p = 0.57) and PI (p = 0.53) in the ACA and SVC flow (p = 0.16) post-BT.

The cerebral HbO2 increased significantly (mean difference 12.53 μM; p < 0.001) post-BT. The pre-BT mean cerebral tissue oxygenation index (TOI) (66.5%) increased significantly post-BT (73.6%; p < 0.001).

Conclusion The cerebral blood flow velocity decreased but there was no change in SVC flow volume; cerebral tissue oxygenation improved following BT during the 2nd to 4th week of life in preterm infants.

REFERENCE
1 Banerjee J et al. PAS Conference May 2014

PO-0488 NON-INVASIVE HAEMODYNAMIC MONITORING USING ELECTRICAL CARDIOMETRY IN NEONATES DURING RESPIRATORY PROCEDURES

A Boet, 1 G Jourdain, 1 A Capderou, 1 O Grillo-Muss, 1 P Labrador, 1 D De Luca, 1 S Demontoux. 1Pediatrics and Neonatal Critical Care, CHU Antoine Béclère South Paris University Hospital, Clamart, France; 2Pediatrics and Neonatal Critical Care Pediatric S. M. U. R, CHU Antoine Béclère South Paris University Hospital, Clamart, France; 3Inserm 999, South Paris University Hospital, Le Plessis Robinson, France; 4Centre Chirurgical Marie Lannelongue, South Paris University Hospital, Le Plessis Robinson, France

Background Electrical cardiometry (EC: Osypka Medical, Berlin, Germany and La Jolla, California, USA) is a new non-invasive technique for haemodynamic monitoring of neonates. No data are available for preterm babies during respiratory procedures, such as elective extubation or chest physiotherapy. We designed this study to clarify if these procedures have any haemodynamic consequences.

Abstract PO-0488 Figure 1