A neuroprotective agent. The aim of this study was to explore the neuroprotective properties of CBD after hypoxia ischemia in newborn piglets.

Materials and method

54 anaesthetised piglets (age 12–36 h) were randomised to either undergo global hypoxia (n = 48) until the base excess reached -20 mmol/L or the mean arterial blood pressure dropped below 20 mm Hg or to the SHAM group (n = 6). After hypoxia piglets were randomised to the different study groups: Hypoxia+CBD (1 mg/kg) (n = 12), Hypoxia+CBD(1 mg/kg)+hypothermia (n = 12), hypoxia (n = 12) or hypoxia+hypothermia (n = 12). 9.5 h after end of hypoxia the piglets were euthanized and samples from hippocampus were snap frozen in liquid nitrogen. Levels of lactate (lac), N-acetylaspartate (NAA) and glutamate (glu) were measured by proton-magnetic-resonance-spectroscopy (H-MRS) and ratios predictive of neurodevelopmental outcome after hypoxic-ischaemicencephalopathy in newborns where calculated (lac/NAA and glu/NAA). Outliers > 2.5 SD away from mean were removed before analysis.

Results

Discussion Hypoxia significantly increased both Lac/NAA and Glu/NAA ratios. Hypothermia groups were comparable to SHAM while there were no significant effects of CBD on these MRS biomarkers. The difference in the way of inducing and the severity of hypoxia-ischaemia in our model might explain this lack of effect compared to previously published studies.
Pre-BT ACA peak systolic (0.37 m/s) and mean velocity (0.19 m/s) decreased significantly post-BT (0.32 and 0.16 respectively; p < 0.01). There was no significant change in RI (p = 0.57) and PI (p = 0.53) in the ACA and SVC flow (p = 0.16) post-BT.

The cerebral HbO₂ increased significantly (mean difference 12.53 μM; p < 0.001) post-BT. The pre-BT mean cerebral tissue oxygenation index (TOI) (66.5%) increased significantly post-BT (73.6%; p < 0.001).

Conclusions The cerebral blood flow velocity decreased but there was no change in SVC flow volume; cerebral tissue oxygenation improved following BT during the 2nd to 4th week of life in preterm infants.

REFERENCE
1 Banerjee et al. PAS Conference May 2014

PO-0488 CEREBRAL HAEMODYNAMIC RESPONSE TO BLOOD TRANSFUSION VARIES WITH CHRONOLOGICAL AGE IN PRETERM INFANTS
1) Banerjee, 2) TS Leung, 3) N Aladangady, 1) Department of Neonatology, Homerton University Hospital, London, UK; 2) Department of Medical Physics and Bioengineering, University College London, London, UK

Background and aim We have shown that cerebral blood flow decreases following blood transfusion (BT) in extreme preterm infants during the first week of life. 1)

Aim To investigate the cerebral blood flow changes following BT in relation to the chronological age of preterm infants.

Methods Preterm infants who received BT during the first 10 weeks of life were included. Pre and post-BT Anterior Cerebral artery (ACA) mean velocity, resistance index (RI) and pulsatility index (PI), and Superior Venae Cavae (SVC) flow were measured using Doppler USS. Pre and post BT measurements were compared by paired t-test using SPSS 22.0.

Results 59 BT events were studied, 20 received BT during 1st week (Group 1), 21 during the 2nd to 4th week (Group 2) and 18 during 4–7th week (Group 3) of age. The median age (range) at BT was 5 (1–7), 14 (8–27) and 45 (29–68) days for group 1, 2 and 3 respectively. In all 3 groups the pre-BT ACA mean velocity decreased significantly post-BT (p < 0.03) and there was no significant change in RI and PI in the ACA. The pre-BT mean SVC flow decreased significantly post-BT in Group 1 and Group 3 (p = 0.03 and <0.001 respectively), but this was not significant in the Group 2 infants (p = 0.16).

Conclusion The effect of BT on cerebral haemodynamics was more prominent during the first week and after 4th week of age in preterm infants.

REFERENCE
1 Banerjee et al. PAS Conference May 2014

PO-0486 NON-INVASIVE HAEMODYNAMIC MONITORING USING ELECTRICAL CARDIOMETRY IN NEONATES DURING RESPIRATORY PROCEDURES

Acknowledgements The hPDA of the “ligation-group” was haemodynamically more relevant and preterms were more morbid than in the “non-ligation group”. The observed differences reflect our policy of constraining the need for ligating a hPDA on echocardiography to selective ligation subject to both the severity of echocardiographic findings and the hPDA’s clinical impact.