Involvement of the corpus callosum after neurodevelopmental and behaviour outcome in established in vitro models of neonatal hypoxic-ischaemic brain injury.

Aim To evaluate the effect of SN in established in vivo and in vitro models of neonatal hypoxic-ischaemic brain injury.

Methods Seven day old mice underwent unilateral common carotid artery ligation, followed by exposure to hypoxia (8% oxygen). Thereafter, mouse pups were randomly injected intraperitoneally with SN (0.25 mg/kg body weight) or vehicle. As endpoint we determined the histological injury score and the number of caspase-3 positive cells 24 h after the insult. Primary cultured hippocampal neurons were treated with oxygen glucose deprivation (OGD) on day 10. Neurons were assigned to the following groups: i) control ii) OGD iii) OGD+SN (1, 10 or 50 μg/l). As primary outcome parameter, cell death was evaluated via real time live confocal imaging using calcine-AM and propidium iodide (PI).

Results SN displayed a non-significant trend to lower mean values of histological injury score compared to control (n = 11–12, p > 0.05) and significantly reduced the number of cells stained positively for activated caspase-3 (n = 6, p < 0.05). In vitro SN application on hippocampal neurons (OGD+SN) significantly reduced the number of dead cells assessed by the PI/calcine ratio compared with the untreated OGD group (n = 8, p < 0.05).

Conclusion We provide first evidence that SN is neuroprotective in established in vitro and in vivo models of neonatal hypoxic-ischaemic brain injury and might therefore be considered a promising therapeutic option.

Involvement of the corpus callosum after perinatal asphyxia demonstrated using diffusion weighted MRI is related to neurodevelopmental outcome.

Aim To evaluate the effect of SN in established in vivo and in vitro models of neonatal hypoxic-ischaemic brain injury.

Methods Seven day old mice underwent unilateral common carotid artery ligation, followed by exposure to hypoxia (8% oxygen). Thereafter, mouse pups were randomly injected intraperitoneally with SN (0.25 mg/kg body weight) or vehicle. As endpoint we determined the histological injury score and the number of caspase-3 positive cells 24 h after the insult. Primary cultured hippocampal neurons were treated with oxygen glucose deprivation (OGD) on day 10. Neurons were assigned to the following groups: i) control ii) OGD iii) OGD+SN (1, 10 or 50 μg/l). As primary outcome parameter, cell death was evaluated via real time live confocal imaging using calcine-AM and propidium iodide (PI).

Results SN displayed a non-significant trend to lower mean values of histological injury score compared to control (n = 11–12, p > 0.05) and significantly reduced the number of cells stained positively for activated caspase-3 (n = 6, p < 0.05). In vitro SN application on hippocampal neurons (OGD+SN) significantly reduced the number of dead cells assessed by the PI/calcine ratio compared with the untreated OGD group (n = 8, p < 0.05).

Conclusion We provide first evidence that SN is neuroprotective in established in vitro and in vivo models of neonatal hypoxic-ischaemic brain injury and might therefore be considered a promising therapeutic option.

Neurodevelopmental and behaviour outcome of preterms (GA <30wks) at 8 years by age appropriate psychometric evaluations to see whether tests used at younger ages could predict worst outcomes at older ages in relation to some neonatal factors.

Method Along with neurologic examinations, 33 infants were prospectively evaluated at 3, 6, 12, 18, 24 months of corrected age with Bayley Scales of Infant Development – II (BSID-II), at 3, 5 years with Stanford-Binet, at 8 years with WISC-R.

Results 72% of children had no (IQ >85), 24.3% had mild (IQ 74–84), 3% had major (IQ <70, blindness) impairments. 24.2% had special education, 15.2% ADHD, 6.1% autism, 9.1% learning/language, 6.1% anxiety disorders. The probability of neurodevelopmental test and IQ scores of VLBW infants <1000 gr being lower than healthy children at same age was 10.5 times higher (OR 4.7, 95%, CI 0.92–24.5) at 8 years of age. Oxygen treatment >30 days adversely affected the scores up to 18th month (OR 2.1, 95%, CI 0.44–9.8). Babies having low scores of the18th month-cognitive and motor sub-test of BSID-II had 16 times higher probability of having low WISC-R total IQ scores at 8 years. (p < 0.05). 19 children with sepsis at 8 years had lower performance and total IQ scores (p < 0.05).

Conclusion Prolonged oxygen therapy and having and sepsis are significant factors affecting later IQ of VLBW infants. Lower BSID-II scores at 18th month may predict future lower total IQ scores. Longitudinal follow up and early intervention is of paramount importance.

Neuroprotective effect of pentoxifylline in rat pups with hypoxic-ischaemic encephalopathy.

Aim To evaluate the effect of SN in established in vivo and in vitro models of neonatal hypoxic-ischaemic brain injury and might therefore be considered a promising therapeutic option.

Methods Seven day old mice underwent unilateral common carotid artery ligation, followed by exposure to hypoxia (8% oxygen). Thereafter, mouse pups were randomly injected intraperitoneally with SN (0.25 mg/kg body weight) or vehicle. As endpoint we determined the histological injury score and the number of caspase-3 positive cells 24 h after the insult. Primary cultured hippocampal neurons were treated with oxygen glucose deprivation (OGD) on day 10. Neurons were assigned to the following groups: i) control ii) OGD iii) OGD+SN (1, 10 or 50 μg/l). As primary outcome parameter, cell death was evaluated via real time live confocal imaging using calcine-AM and propidium iodide (PI).

Results SN displayed a non-significant trend to lower mean values of histological injury score compared to control (n = 11–12, p > 0.05) and significantly reduced the number of cells stained positively for activated caspase-3 (n = 6, p < 0.05). In vitro SN application on hippocampal neurons (OGD+SN) significantly reduced the number of dead cells assessed by the PI/calcine ratio compared with the untreated OGD group (n = 8, p < 0.05).

Conclusion We provide first evidence that SN is neuroprotective in established in vitro and in vivo models of neonatal hypoxic-ischaemic brain injury and might therefore be considered a promising therapeutic option.

Conclusion Prolonged oxygen therapy and having and sepsis are significant factors affecting later IQ of VLBW infants. Lower BSID-II scores at 18th month may predict future lower total IQ scores. Longitudinal follow up and early intervention is of paramount importance.