anti-T. gondii IgG in oral fluid. It was then applied to 150 children aged 0–15 months (341 samples) born from 133 women who seroconverted during pregnancy and 17 who remained seronegative. IgG on oral fluid were compared to serum IgG detected with MEIA AxSYM® Toxo IgG (Abbott Laboratories).

Results The pilot study validated the acceptability and the safety of the test and the adequate duration of sampling. IgG detected in serum and in oral fluid had a parallel kinetics among newborns (correlation coefficient: 0.59, p < 0.0001), with a concordant decline in the non-infected ones (n = 110) and matching raising or stable IgG in those who were congenitally-infected (n = 23).

Conclusions Collection of oral fluid is painless and inexpensive. Our new test provides a simple and rapid method to detect anti-Toxoplasma gondii IgG and to manage newborn at risk for congenital infection. It could have many other applications in pregnant women and other groups of patients.

PO-0384 THE PRACTICAL METHOD TO DIAGNOSIS OF FOURTEEN CASES OF GLYCOPEN STORAGE DISEASES IN OUR LABORATORY

I Yanou, N Gagy, M Djedou, N Ata, S Gaoem, A Berhoune. Medicine, CHU Mustapha Bacha, Algier, Algeria

10.1136/archdischild-2014-307384.1030

Glycopen storage diseases (GSD) are a group of inherited disorders of metabolism that result in storage of excess glycogen. Several well-defined defects in one of the enzymes involved in the synthesis or degradation of glycogen have been described. There are over 13 types and they are classified based on the enzyme deficiency and the affected tissue (liver, muscle or both).

In this study, we wish to report the biochemical investigations adopted in main infantile GSD diagnosed in our laboratory. Four steps diagnostic procedure have been assumed, taking into account several frequent clinical observations leading to further targeted biochemical parameters:

1. Assessment of the metabolic disorders with standard tests (fast blood glucose, uric acid, triglycerides, total cholesterol, ASAT, ALAT, CK, lactic acid).
2. Quantitative determination of glycopen in leucocytes (or erythrocytes) after extraction, precipitation and treatment with an throne reagent.
3. Oral galactose test with blood lactate and glucose estimation, in combination with a glucagon tolerance test to screen the main types of liver glycopenosis.
4. Lysosomal acid a-glucosidase activity when GSD type II (Pompe disease) is suspected.

Since 1995 and on the basis of this screening procedure and clinical features, 14 cases of GSD have been categorised:

- 6 forbes’s disease (GSD III, debranching-enzyme deficiency)
- 3 von Gierke’s disease (GSD I, glucose-6-phosphatase deficiency)
- 2 pompe’s disease (GSD II, maltase acid deficiency)
- 1 Andersen’s disease (GSD IV, branching-enzyme deficiency)
- 1 Hers’s disease (GSD VI, hepatic phosphorylase deficiency)
- 1 GSD IX (phosphorylase kinase deficiency)

Our laboratory diagnostic approach include simple screening tests easy to implement in clinical chemistry laboratories. Thus, Pompe disease diagnosis is easily done in our laboratory. The measurement of tissue enzyme activities (liver and muscle) of the other enzymes is limited to some specialised laboratories. The molecular diagnosis offers a good alternative for GSD type 0, I and III but requires better financial means.

PO-0385 WITHDRAWN

PO-0386 NEONATAL SEIZURES ON AEEG MONITORING AFTER IN UTERO EXPOSURE TO VENLAFAXINE

1A Ansan, 2SE Ibhaneeshbor, 3CM Manjunatha. 1Paediatrics, Royal Alexandra Hospital, Paisley, UK; 2Neonatology, Wishaw General Hospital, Wishaw, UK

10.1136/archdischild-2014-307384.1032

We report an unusual presentation of withdrawal from venlafaxine in a preterm baby of 29 weeks gestation, who presented with myoclonic seizures on second day of life. The seizures were confirmed with amplitude integrated EEG (aEEG). Other causes of neonatal seizures were excluded. She responded to treatment with phenobarbitone and phenytoin. Her MRI scan of the brain was normal and remains well on follow up. We believe this case to be the first report of seizure in a preterm baby resulting from maternal venlafaxine use and details the contribution of aEEG in the care of one such infant.