Background and aims Blood cultures are taken to detect bacteremia and direct antimicrobial therapy. Uncertainty regarding contamination versus bacteremia leads to financial and human cost through increased investigations and prolonged antimicrobial therapy. Contamination may be due to inadequate aseptic technique, with rates up to 10%. This audit aims to establish bacteremia rates, contamination rates and review if positive blood cultures change clinical management.

Methods A retrospective list of all paediatric blood cultures collected between 7/8/13–7/12/13 was compiled and case-notes of positive results reviewed using a designated proforma.

Results 339 blood cultures were taken, 19 were positive. 47% of positive results occurred in patients <1 year old. The main indication was pyrexia (63%). 42% of cultures were collected on the ward. Documented aseptic non-touch technique in 1 case (5%). Antibiotics were administered before collection in 10% 68% of positive results were felt to be contaminants.

Our bacteremia rate is calculated as 1.76%. 37% of all positive cultures were repeated including three of six confirmed bacteremia cases.

A positive culture result altered clinical management in 32%. Bacteremia rates are low at 1.76%. However, there is still a significant contamination rate of 68%, especially in infants where aseptic procedures are difficult. Our results confirm that a blood culture result in isolation is of limited value and clinical correlation is paramount.

REFERENCES
1 Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilisation. The true consequences of false positive results. JAMA 1991 265:365–369

Background Dengue fever (DF) infects between 50 and 100 million people each year. Local DF transmission was first reported in Europe in 2010 and WHO now warns of a possible DF outbreak in Europe.

DF is usually self-limiting in the population (overall mortality rate of <1%). However, 90% of patients with dengue haemorrhagic fever (severe dengue) are under 15 years old. The initial presentation of both is similar in children. Mortality rate in severe dengue is 2.5%.

Aim To describe DF presentation in a child cohort.

Method During an 8 week period, data were collected for 19 children diagnosed with DF and included demography, previous dengue infection, clinical presentation and time interval between symptom onset and admission.

Results All children with DF were under 15 years old. None had previous episodes, complications or progression to dengue haemorrhagic fever. 74% of children were living in red flagged areas when symptoms occurred. Close contacts with a recent DF diagnosis were identified in 37%. Pyrexia was a first symptom in 84%. Other symptoms included rashes (42%), cough (37%), loss of appetite (37%), vomiting (37%), dizziness (37%) and headache (37%), as well as 14 other symptoms of lower frequency. An average of 5 days separated initial symptoms and admission.

Conclusion In considering differential diagnosis in children presenting in Europe with non-specific symptoms such as those found in this study, the possibility of DF should not be omitted. A travel and contact history is even more important if this potentially serious infection is to be recognised.