Wilson's disease (WD) is a rare, inherited, genetic disorder of copper metabolism. Our aims to determine common clinical presentations, laboratory findings, diagnostic methods and long term outcome in Egyptian patients.

Methods All medical records, between 2000 and 2010 in the paediatric hepatology department, were reviewed. Detailed follow-up data of the disease had been collected for each patient. Serum ceruloplasmin, liver function tests and other routine laboratory investigations. Slit lamp examination for Kayser Fleisher rings. The most significant laboratory findings were, copper excretion after challenge with depencillamine and Kayser Flisher rings. The most significant laboratory findings were, copper excretion after challenge with depencillamine and Kayser Flisher rings. The most significant laboratory findings were, copper excretion after challenge with depencillamine and Kayser Flisher rings. The most significant laboratory findings were, copper excretion after challenge with depencillamine and Kayser Flisher rings.

Results The most significant hepatic presentation was jaundice and Kayser Fleisher rings. The most significant laboratory findings were copper excretion after challenge with depencillamine (1546.57 ± 99.55 mg/dl) and decrease of mean ceruloplasmin (13.8 ± 2.38 mg/dl) below 20 ug/dl. There were significant increase of albumin and significant improvement of prothrombin time after treatment.

Conclusions Kayser Fleisher rings, urinary copper excretion and low serum ceruloplasmin were considered sufficient to establish the diagnosis of WD. Liver biopsy may be needed for confirmation of the diagnosis and to assess the extent and severity of the disease.

PO-0139 WILSON’S DISEASE: TEN YEARS RETROSPECTIVE EXPERIENCE AT NATIONAL LIVER INSTITUTE, EGYPT

E Salama, E Behairy, A Ahmed, M Niemin, M Ahmed. Pediatric Department, Menoufia University, Cairo, Egypt

Background and aims Wilson’s disease (WD) is a rare, inherited, genetic disorder of copper metabolism. Our aims to determine common clinical presentations, laboratory findings, diagnostic methods and long term outcome in Egyptian patients.

Methods All medical records, between 2000 and 2010 in the paediatric hepatology department, were reviewed. Detailed follow-up data of the disease had been collected for each patient. Serum ceruloplasmin, liver function tests and other routine laboratory investigations. Slit lamp examination for Kayser Fleisher rings and 24-hour urine for copper before and after penicillamine challenge were done. Percutaneous liver biopsy was performed in most patients.

Results The most significant hepatic presentation was jaundice and Kayser Fleisher rings. The most significant laboratory findings were copper excretion after challenge with depencillamine (1546.57 ± 99.55 mg/dl) and decrease of mean ceruloplasmin concentration (13.8 ± 2.38 mg/dl) below 20 ug/dl. There were significant increase of albumin and significant improvement of prothrombin time after treatment.

Conclusions Kayser Fleisher rings, urinary copper excretion and low serum ceruloplasmin were considered sufficient to establish the diagnosis of WD. Liver biopsy may be needed for confirmation of the diagnosis and to assess the extent and severity of the disease.

PO-0140 WHETHER ANTIMICROBIAL THERAPY AFFECT FECAL EXCRETION TIME IN PAEDIATRIC PATIENTS OF NONTYPHOID SALMONELLOSIS WITH DIFFERENT SEVERITY

YT Shen, IF Huang, HH Hu, MF Chang, SK Sheu. Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

Background Multidisciplinary treatment of short bowel syndrome (SBS) has been a success story for paediatric surgery. Longitudinal intestinal lengthening and tailoring (LILT) is the archetypal autologous gastrointestinal reconstruction procedure, but despite it being performed routinely in intestinal rehabilitation departments, the physiological basis behind it is poorly understood. We attempt to analyse the features that improve intestinal adaptation and offer a LILT theoretical model.

Methods Based on our clinical experience on 59 LILT procedures over 30 years, we set up a concise theoretical model that describes post-LILT bowel adaptation in a holistic way.

Conclusions LILT has become an essential component in the management of SBS. The physiological principles described above provide a theoretical basis that explains the absorptive advantage offered by the LILT. Further research is necessary to quantify the effect of these procedures on the microscopic and hormonal levels.

PO-0141 OVERVIEW ON THE PHYSIOLOGY OF LONGITUDINAL INTESTINAL LENGTHENING AND TAILORING IN SHORT BOWEL SYNDROME

1. S Siminas, 1R Coleta, 1M Baath, 1A Morabito. 1Paediatric Surgery Department, Manchester Children’s Hospital, Manchester, UK; 2Paediatric Autologous Bowel Reconstruction Unit, Manchester Children’s Hospital, Manchester, UK

Background Multidisciplinary treatment of short bowel syndrome (SBS) has been a success story for paediatric surgery. Longitudinal intestinal lengthening and tailoring (LILT) is the archetypal autologous gastrointestinal reconstruction procedure, but despite it being performed routinely in intestinal rehabilitation departments, the physiological basis behind it is poorly understood. We attempt to analyse the features that improve intestinal adaptation and offer a LILT theoretical model.

Methods Based on our clinical experience on 59 LILT procedures over 30 years, we set up a concise theoretical model that describes post-LILT bowel adaptation in a holistic way.

Conclusions LILT has become an essential component in the management of SBS. The physiological principles described above provide a theoretical basis that explains the absorptive advantage offered by the LILT. Further research is necessary to quantify the effect of these procedures on the microscopic and hormonal levels.