Cardiac Failure in Congenital Diaphragmatic Hernia: Cause or Consequence?

IS-004 THE HEART BEYOND THE LUNG
N Patel. Department of Neonatology, Royal Hospital for Sick Children, Glasgow, UK

Congenital diaphragmatic hernia (CDH) is in many respects a disorder of the circulation. Pulmonary hypertension due to abnormal pulmonary vasculogenesis and function results in increased afterload on the right ventricle (RV), and via mechanisms of venous interdependence in turn leads to biventricular cardiac failure. New echocardiographic imaging modalities have revealed insights into cardiac performance in CDH, including the importance of early diastolic dysfunction. Diastolic dysfunction appears to be related to clinical course including early outcomes in CDH. Improved understanding of the role of cardiac function in CDH may allow better early prognostication and inform therapeutic decisions including timing of surgery. New treatment paradigms incorporating early assessment and targeted therapy to optimise cardiac function may allow us to improve outcome in CDH.

Circulation/PDA

IS-005 PHYSIOLOGY OF PATENT DUCTUS ARTERIOSUS
N Evans. Newborn Care, RPA Hospital and University of Sydney, Sydney, Australia

The ductus arteriosus (DA) does one thing with its life, it constricts after birth in response to rising pO2, achieving functional closure often by 24 h. If it fails to constrict or close, it remains as a passive conduit with movement of blood determined by the relative pressure at each end. Constriction and closure in well preterm babies occurs in similar time frame to term babies but in the very immature or unwell preterm, this process can fail.

The early postnatal constriction of the preterm ductus predicts its subsequent behaviour with good constriction predicting closure and poor constriction predicting persisting patency. Because pulmonary pressures in preterm babies tend to be sub-systemic even early after birth, the dominant direction of shunting is left to right. In those where constriction fails, large movements of blood from the systemic to pulmonary circulation can occur. The haemodynamic impact of this can be much earlier than is widely appreciated with large PDA being a stronger predictor of low systemic blood flow early after birth than later and overload of the pulmonary circulation, apparent as pulmonary haemorrhage, within the first 24–36 hrs.

This pathophysiology suggests that early intervention will be needed to make a difference to DA related morbidity. The predictive properties of early DA constriction provides an opportunity to target early treatment. This has been tested in the pilot DETECT trial with a reduction in pulmonary haemorrhage. Larger RCTs that embrace the above physiology in their design are needed.

Enteral Nutrition

IS-006 OPTIMISING ENTERAL NUTRITION IN THE PREMATURE INFANT
C Agostoni, F Mosca. Department of Clinical Sciences and Community Health University of Milan, Neonatal-Pediatric Area IRCCS Ospedale Maggiore Policlinico, Milan, Italy

Both postnatal nutritional deficit and postnatal growth restriction represent major issues in preterm neonates and have been associated with adverse long-term outcome. Optimisation of enteral nutrition without increasing the risk of necrotizing enterocolitis (NEC) has thus become a priority in preterm neonates. Due to their immaturity premature infants are frequently started on parenteral nutrition and then switched with different times and methods to enteral nutrition. Most recent ESPGHAN recommendations for enteral nutrition suggest for an average preterm infant a pro kg daily supply of 110–135 kcal, 3.3–4 g proteins, and 4.8–6.6 g lipids, inclusive of medium chain triglycerides if added, and adequate amounts of linoleic and α-linolenic acids, arachidonic and docosahexaenoic acids. The use of human milk for preterm infants has increased over the past decade reflecting an improved awareness of the benefits of human milk. A number of breast milk components have been credited with anti-inflammatory properties reducing clinical morbidity such as NEC and sepsis in the preterm infant. However, as breastfeeding is quite difficult for premature infants, a comprehensive approach to standardising preterm infant nutrition is essential to optimise the collection, storage, fortification and delivery of human milk to preterm neonates. Many questions remain unresolved such as the definition of optimal postnatal growth velocity, the most effective way of transition from parenteral to enteral nutrition and the role of compounds such as probiotics and prebiotics. As a matter of facts, there is great heterogeneity in nutrition practices among neonatal units, with frequent discrepancies.

Joint AAP, EPA and EAP Session – Child Health Inequalities. Can we Make a Difference?

IS-007 EUROPEAN PAEDIATRIC ASSOCIATION
1 L Namazova Baranova, 2M Pettorillo-Montanari, 3J Ehrich, 1President, European Paediatric Association, Moscow, Russia; 2Secretary General, European Paediatric Association, Foggia, Italy; 3Treasurer, European Paediatric Association, Hannoover, Germany

Avoiding Unnecessary Variations and Diversities of Child Health Care Systems in Europe Paediatrics in Europe is characterised by the diversity, variety and heterogeneity of health care offered in
the 53 European countries with more than 200 million children aged less than 18 years and with more than 200,000 paediatricians. Paediatrics respects the rules on child development which state that an adolescent is not a young adult, a school child is not a small adolescent, an infant is not a small infant and a premature newborn is not a small neonate. Paediatricians care for both healthy and sick children. Health care management differs according to where it is offered such as inpatient care in hospitals, outpatient care in hospitals or in private practices, homecare and rehabilitative care in special rehabilitation units. Paediatric health care focuses on the patient and not on diseases; however children with acute diseases need a completely different case management than children with chronic diseases. Special care is given to underprivileged and marginalised children such as children with chronic diseases and disabilities, children with a migrant background and poor children. Children have no voice in society and their caregivers do not speak with one voice, which has led to considerable inequity of health care in many European countries.

There is currently no European wide “bank” of data to enable comparative studies of service outcomes to encourage health service research relating to infants, children and young people. The aim of our presentation is to improve international cooperation in child health care in all European countries in order to improve future services. Understanding how and why services work, relating structure and process to experience and outcomes is essential at a time of economic recession. Paediatricians should not aim at creating a monopoly; instead they must favour the team approach of all caregivers.

Neonatal Brain and Development – Evolving Techniques

IS-008 SHEDDING LIGHT ON THE NEONATAL BRAIN

T Austin. Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

Brain injury in the newborn remains a major cause of death and serious lifelong disability, with alterations in cerebral perfusion and oxygenation implicated in the pathophysiology of injury in both preterm and term infants. Near-infrared light shows a strong absorption dependency on oxygenation state and provides a safe, non-invasive means of monitoring cerebral function at the bedside. Improved continuous quantification in newer generation instruments are an important step in developing clinically useful monitors. Multi-channel systems allow images of the haemodynamic response to functional activation to be reconstructed.

A collaborative group, neoLAB, has been created between Cambridge and University College London (UCL) with the aim of developing and refining optical systems to study the development of haemodynamic activity in the developing brain.

A frequency multiplexed optical topography system, designed and built at UCL, has been used to study novel haemodynamic events associated with seizures in the newborn. Work is currently being undertaken to look at the development of functional resting state cortical networks.

The UCL group has also developed the first 3D optical imaging system. The optical tomography system uses time-correlated single photon counting (TCSPC) technology to measure the flight times of photons as they are transmitted between points on the surface in order to generate 3D images of regional blood volume and oxygenation.

The latest generation of this system has a significantly improved time resolution designed to capture dynamic changes in regional blood flow associated with functional activation.

IS-009 EVENTFUL WIRING AND MONITORING OF NEONATAL BRAIN

S Vanhatalo. BABA Center and Children’s Clinical Neurophysiology, Children’s Hospital Helsinki University Central Hospital, Helsinki, Finland

Since the beginning of preterm EEG practise half a century ago, the interpretation of EEG has remained phenomenological, and based on observing clinical correlates of otherwise unexplained waveforms. Recent developments in basic neurobiology, as well as in the EEG recording and analysis techniques, have offered pathways to paradigm shifts at multiple levels.

Experimental studies have shown that early brain activity consists of events that are crucial for the activity-dependent, experience-independent network growth that takes place during last trimester and/or early prematurity. New recording techniques have made it possible to characterise these events from the human preterm babies, hence opening a window to translational...