Conclusions EOS in term infants is associated with significantly lower maternal and neonatal 25-OHD levels. We also found that levels of 25-OHD in neonates were positively correlated with those in mothers. These data suggest that adequate vitamin D supplementation during pregnancy may be helpful to prevent EOS in term neonates.

Background Multi-resistant Staphylococcus capitis NRCS-A is involved in late-onset sepsis (LOS) in French NICUs. Aims To investigate the geographical distribution of NRCS-A, and to precise its susceptibility profile.

Methods Twelve S. capitis isolates from distant NICUs (Australia, Belgium, France, United Kingdom, n = 3 each) and 2 S. capitis isolates from adult patients were analysed using PFGE, SCCmec typing, dru-typing, a MLST-like analysis, and antimicrobial susceptibility testing. To explore impact of vancomycin selective pressure, after 15 daily subcultures with vancomycin, isolates from adult patients were analysed using PFGE, and to precise its susceptibility profile.

Results All NICU S. capitis (i) shared >80% similarity of PFGE profile and were similar to NRCS-A profile, (ii) harboured a type V-related SCCmec element, (iii) exhibited the same drug-type, (iv) formed a monophyletic group, (v) harbouring a same antimicrobial susceptibility profile including aminoglycosides and methicillin resistance, and vancomycin heteroresistance. These molecular and antimicrobial susceptibility profiles differed from those of adult isolates. An increase of vancomycin and daptomycin (but not linezolid) MICs was observed, significantly faster (p < 0.05) for NRCS-A isolates than other tested strains.

Conclusion Our analysis demonstrates an unexpected worldwide distribution of S. capitis NRCS-A, specifically in NICUs. Recently, we collected complementary NICU isolates belonging to NRCS-A from Norway, Denmark, the Netherlands, USA, Brazil, New Zealand and Canada, confirming the worrisome dissemination of NRCS-A. Its multi-resistant profile and its ability to rapidly adapt to vancomycin selective pressure, constitute a selective advantage to NRCS-A in NICUs, and raise the issue of potential therapeutic failure and the need for alternative antimicrobial regimens.

Neonatology Clinical

PS-223 IMPROVING STAFF COMPETENCE AND CONFIDENCE FOR NEONATAL RESUSCITATION, A QUALITY IMPROVEMENT INITIATIVE

S. Hackett, M. Cassidy, S. Gormally, Neonatal Intensive Care Unit, Our Lady of Lourdes Hospital Drogheda Co. Louth, Drogheda, Ireland

10.1136/archdischild-2014-307384.522

Aims To introduce a Quality Improvement Initiative aimed at instilling confidence and competence with Neonatal Resuscitation in Labour Ward (LW) and Neonatal Unit (NICU) staff.

Methods A Neonatal Resuscitation Initiative Team (NRIT) consisted of LW and NICU midwives, an Advanced Nurse Practitioner (ANP) and Paediatric Consultant. LW, NICU and paediatric staff were invited to attend a presentation to outline the aims and methodology of the initiative. Emphasis was placed on teamwork with effective leadership and communication. This was followed by a demonstration of low fidelity simulated neonatal resuscitations performed by the NRIT.

Midwifery and NICU staff were then invited to partake in a Simulated Team Response (STR) to 2 simulated resuscitations.

A random selection of participants completed a closed questionnaire before and after the NRIT demonstration and before and after their STR. Levels of confidence in all aspects of neonatal resuscitation, including teamwork and leadership skills were evaluated using a Likert Scale.

PS-224 VIDEO EDUCATION TO IMPROVE BAG MASK VENTILATION DURING SIMULATED NEWBORN RESUSCITATION

P. Deindl, J. Schwindt, A. Berge, G. Schmieder. Department of Neonatology and Pediatric Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pediatrics and Adolescent Medicine Division of Neonatology Pediatric Intensive Care and Neonopediatrics, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine Division of Neonatology Pediatric Intensive Care and Neonopediatrics, Royal Alexandra Hospital, Edmonton, Canada

Aim To evaluate if video based education could improve quality of positive pressure ventilation (PPV) performed by novice health care providers during neonatal resuscitation.

Methods Twenty-eight 4th year medical students were randomly paired and instructed to give PPV to a modified manikin as single-person resuscitators, then as two-person paired resuscitators using either an anatomical shaped neonatal face mask with an air cushion rim (IS) or a Laerdal round face mask (LM). After watching a video-tutorial they randomly repeated each mask ventilation performance. Airway pressure, gas flow, tidal volume, and mask leak were recorded. PPV performance quality was analysed using video recording.

Results Mask leak was lower during one-person ventilation when using IS (56 ± 16%) compared to LM (71 ± 19%), LM mask leak during one-person ventilation was significantly lower when using the two point top hold in contrast to the ok rim hold (before training: 63 ± 22% vs. 72 ± 18%, after training: 57 ± 17% vs. 77 ± 12%, respectively). Watching a video-tutorial improved correct head position (score: 1.4 ± 0.7 vs. 3.8 ±
Abstract PS-224 Figure 1

Abstract PS-224 Figure 2

PS-225 RISK FACTORS (RF) ASSOCIATED WITH ADVANCED NEONATAL RESUSCITATION IN ≥ 34 W GA NEWBORNS: A MULTICENTER, PROSPECTIVE, CASE-CONTROLLED STUDY. THE ADVANCED NEONATAL RESUSCITATION (ANR) STUDY

1JP Berazategui, 2A Aguilar, 3M Escobedo, 4F Althabe, 5R Ginsburg, 6F De Almeida, 7G Almoro, 8F Saker, 9MG Puig, 10D Amado, 11M Valera, 12E Szyld. 1Maternal and Infant, FUNDASAMIN / Hospital Universitario Austral, Pilar - Derqui, Argentina; 2Maternal and Infant, University of Oklahoma, Oklahoma, USA; 3Maternal and Infant, FUNDASAMIN / Hospital Universitario Austral, Pilar - Derqui, Argentina; 4Maternal and Infant, Escola P. de Medicina da Universidade F. de Sao Paulo, Sao Paulo, Brazil; 5Maternal and Infant, Clinica y Maternidad Suizo Argentina, Buenos Aires, Argentina; 6Maternal and Infant, Cleveland Clinic, Cleveland, USA; 7Maternal and Baby, Facultad de Medicina Universidad de Buenos Aires, Buenos Aires, Argentina; 8Maternal and Infant, Hospital Feernandez, Buenos Aires, Argentina

Background Approximately 1% of newborns (NB) require advanced resuscitation (AR) [intubation (ET), and/or chest compression (CC) and/or medication (ME)] at birth. The NRP recommends checking risk factors maternal (MF), intrapartum (IF) and fetal (FF) before each birth (evidence level of expert recommendation) but the need for a team with advanced skills after risk factors have been identified remains undetermined. This imprecision leads to underprovision of expertise which is unsafe or costly overprovision of expertise.

Objective To evaluate the relationship of RF and the need for AR in NB ≥ 34 w gestational age (GA).

Design/methods Prospective, case-controlled study conducted in 16 sites (ARG, CHL, USA and BRA) during 18 months. DR management followed NRP guidelines. Eligible cases were NB ≥ 34 w GA receiving AR at birth and the 4 consecutive NB not requiring AR were selected as controls for the study. Exclusion criteria: prenatal diagnosis of major congenital malformations. Univariate analysis and multivariate logistic regression (MLR) were used to estimate OR and the associated 95% CI.

Results From 61,593 deliveries, 58,429 NB were ≥ 34 w GA (95%). Out of 219 NB receiving AR (0.37%), 23 were excluded, resulting in 196 cases and 784 controls. We found 21 RF

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR</th>
<th>P</th>
<th>95% (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA < 37wk (GA < 37)</td>
<td>3.0</td>
<td>0.001</td>
<td>(2.0–4.6)</td>
</tr>
<tr>
<td>Eclampsia (E)</td>
<td>6.0</td>
<td>0.049</td>
<td>(1.0–36.6)</td>
</tr>
<tr>
<td>Maternal fever during labour (MFL)</td>
<td>7.8</td>
<td>0.001</td>
<td>(3.1–20.0)</td>
</tr>
<tr>
<td>Clinical chorioamnionitis (CC)</td>
<td>6.1</td>
<td>0.005</td>
<td>(1.7–22.0)</td>
</tr>
<tr>
<td>Fetal bradycardia (FB)</td>
<td>20.9</td>
<td>0.001</td>
<td>(11.3–38.6)</td>
</tr>
<tr>
<td>Abruptio placenta (AP)</td>
<td>21.7</td>
<td>0.001</td>
<td>(8.1–57.7)</td>
</tr>
<tr>
<td>MSAF</td>
<td>11.3</td>
<td>0.001</td>
<td>(7.3–17.6)</td>
</tr>
<tr>
<td>Emergency C5 (ECS)</td>
<td>14.1</td>
<td>0.001</td>
<td>(6.6–23.1)</td>
</tr>
<tr>
<td>General anaesthesia (Ga)</td>
<td>17.2</td>
<td>0.001</td>
<td>(6.9–42.9)</td>
</tr>
<tr>
<td>PROM >18 h</td>
<td>2.10</td>
<td>0.003</td>
<td>(1.2–3.4)</td>
</tr>
</tbody>
</table>

Conclusion A self-instructional educational video on adequate bag mask ventilation significantly improves performance quality scores in novice health care providers.

10.1136/archdischild-2014-307384.524

Poster symposium

Abstract PS-225 Figure 1