DEVELOPMENT OF GUT MICROBIOTA: EFFECT OF ENTERAL FEEDING ON REGIONAL GROWTH OF BIFIDOBACTERIA IN INFANTS EXPOSED TO INTRAPARTUM ANTIBIOTIC PROPHYLAXIS

Background and aims Intrapartum antibiotic prophylaxis (IAP) is the most effective strategy to prevent early-onset Group B Streptococcus (GBS) sepsis. A possible role of IAP on neonatal microbiota is assumed. We aimed to evaluate the effect of IAP on the bacterial colonisation of neonatal gut at 7 and 30 days of life (DOL).

Methods Term newborns, vaginally delivered, were assigned to 2 DOL and allocated into four groups. Group 1: infants exclusively breastfed, not exposed to IAP. Group 2: infants partially breastfed (receiving at least 50% of own mother’s milk), not exposed to IAP. Group 3: infants exclusively breastfed, exposed to IAP. Group 4: infants partially breastfed, exposed to IAP. Faecal samples from the enrolled infants were collected at 7 and 30 DOL. The count of **Bifidobacterium** spp., assessed by real-time PCR, was compared between the four groups.

Results Fifty-five newborns were recruited: 25 in Group 1, 7 in Group 2, 17 in Group 3, 6 in Group 4. On day 7, IAP-exposed newborns showed a significantly lower count of **Bifidobacterium** spp. (p < 0.05). Among infants not exposed to IAP, **Bifidobacterium** spp. count was significantly higher in Group 1 compared to Group 2. On day 30, a significant increase in **Bifidobacterium** spp. count was significantly higher in Group 1 compared to Group 2. On day 30, a significant increase in **Bifidobacterium** spp. count was significantly higher in Group 1 compared to Group 2.

Conclusions Early neonatal microbiota is significantly affected by IAP, resulting in a reduced Bifidobacteria colonisation. Breastfeeding promotes the development of bifidogenic flora and possibly contributes to increase **Bifidobacterium** spp. count in IAP-exposed newborns at 30 DOL.

THE EFFECT OF ENTERAL FEEDING ON REGIONAL CEREBRAL OXYGEN SATURATION IN PRETERM BORN INFANTS

Aim To assess the effect of enteral feeding on regional cerebral oxygen saturation (rSO₂) in preterm infants.

Methods This study was part of a larger prospective cohort study. We used near-infrared spectroscopy to measure rSO₂, which is indicative for cerebral perfusion. We measured during two hours on postnatal days 2–5, 8, 15, 22, 29, and 36. Feeding times were manually recorded. We used multi-level analyses to compare preprandial rSO₂ values to postprandial rSO₂ values, both 10–30 min and 30–60 min after feeding.

Results We included 29 preterm infants with a median GA of 28 + 1/7 (range 23 + 1/7–30 + 4/7) weeks, and a median birth weight of 1025 (range 580–1495) grams. Compared to preprandial rSO₂ values, we found increased postprandial rSO₂ values 10–30 min after feeding (mean[SD]: from 67%[15] to 71%[13], p = 0.014), and 30–60 min after feeding (mean[SD]: from 67%[15] to 73%[14], p = 0.000) on day 8. We observed a trend of decreased rSO₂ values 30–60 min postprandial compared to baseline.