Results Optimal cut-off values for automatically detected inspiratory and expiratory wheezing were 2% and 3%, respectively. The resulting sensitivity of inspiratory and expiratory wheezing were 83.3% and 84.6%, and the specificity 78% and 82.5%, respectively (Figure). The inter-rater agreement was moderate with a Fleiss’ Kappa of 0.59 for inspiratory wheezing and 0.54 for expiratory wheezing.

Conclusion Computerised lung sound analysis is feasible already during the first months of life and provides quantitative and noninvasive information about the extent of wheezing, whereas the assessment by trained clinicians was subjective and only moderate in inter-rater agreement.

PS-180a ANTIBIOTICS USE IN INFANTS HOSPITALISED WITH ACUTE BRONCHIOLITIS IN SOUTHEAST NORWAY

E Dahl-Hansen, HO Skjerven, PM Mowinckel, KH Carlsen, KCL Carlsen. 1Institute of Clinical Medicine, University of Oslo, Oslo, Norway; 2Department of Pediatrics, Oslo University Hospital, Oslo, Norway

Background Airway viruses, most often respiratory syncytial virus, cause acute bronchiolitis. Despite no evidence of its effect, 30–100% of hospitalised children globally receive antibiotics. The aim of the study was to identify the rate of antibiotics use in hospitalised infants with moderate to severe acute bronchiolitis in Norway.

Methods 404 infants hospitalised with moderate to severe acute bronchiolitis in eight centres in Southeast Norway completed a clinical trial of inhaled racemic adrenaline[1] was included in this study. The mean length of stay was 3.3 days, 43.6% received oxygen support, 29.0% nasogastric tube feeding and 7.4% ventilatory support.

Results 8.4% (n = 34) of the patients received systemic antibiotics, (17 intravenous and 17 oral), most commonly penicillin (41%), ampicillin (26%) and gentamicin (24%). Use of antibiotics versus no antibiotics was significantly associated with a longer hospital stay (mean 135.5 h (95% CI 117.0–154.1) vs 65.9 h (95% CI 47.2–85.1), p < 0.001) and use of supportive therapy (all p < 0.03). Patients receiving supportive therapy more often received antibiotics than those without supportive therapy: oxygen (17.4% vs 1.4%, p < 0.001), nasogastric tube feeding (15.5% vs 5.7%, p = 0.03) and ventilation (CPAP) (48.3% vs 5.3%, p < 0.001).

Conclusion The use of antibiotics is substantially lower than previously reported in any geographical region. With length of stay and use of supportive care comparable to other countries, we believe the findings supports a conservative approach in bronchiolitis management.

REFERENCE

Necrotizing Enterocolitis

PS-181 PROBIOTICS (INFLORAN®) FOR NEC PREVENTION: INFLUENCE OF ENTERAL NUTRITION

M Thanhaeuser, A Repa, M Weber, D Endress, A Kreisl, C Binder, A Berger, N Haiden. 1Neonatology Pediatric Intensive Care Medicine and Neuropaediatrics, Medical University of Vienna, Vienna, Austria; 2Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria; 3Pediatrics, Wilhelminen Hospital of Vienna, Vienna, Austria

Background Probiotics may protect from necrotizing enterocolitis (NEC). Former studies in Asian populations have shown that Infloran® - a mixture of Lactobacillus acidophilus and Bifidobacterium infantis - decreases NEC by 80% in very low birth weight (VLBW) infants. Therefore, we implemented Infloran® at our department in 2010. The objectives of our study were to determine the influence of the probiotic Infloran® on NEC incidence,