Methods ECG electrodes and a PO sensor were attached as soon as possible after birth in healthy pre (term) infants. PO data with Signal Identification and Quality > 0.30 were excluded. HRECG and HRPO were compared every 30 s from 1–10 min. Results 755 data pairs of 53 patients were analysed. Median (range) gestational age was 36 (27–41) weeks. Data from ECG and PO were acquired from 82 (26) and 99 (33) s after birth. Median HRECG was <100 bpm the first 2 min after which it rapidly increased. HRPO remained stable at 150–160 bpm (table). Conclusion HR measured by PO is significantly lower compared to ECG, which has important implications for clinical care in the first minutes after birth.

Background and aims Cardiovascular disease is the leading cause of death worldwide. A growing body of evidence suggests that preterm infants develop an unfavourable cardiovascular risk profile in adult life. The aim of this study was to investigate whether early laboratory and ultrasonographic markers of an increased cardiovascular risk are present in former preterm infants at a preschool age.

Methods Former preterm infants born in Tyrol between 2006 and 2008 with a gestational age <32 weeks were followed up at a corrected age of five to seven years. Healthy preschoolers born at term served as controls. Glucose and cholesterol levels were determined after a minimum overnight fasting period of twelve hours. Aortic intima-media thickness (aIMT) was assessed by means of high resolution ultrasound and a software quantification tool.

Results 137 children (preterm: 64, term: 73) were examined. Blood samples were obtained from 80 participants (preterm: 57, term: 23). In comparison to children born at term, former preterm infants had significantly higher HDL cholesterol, but also fasting glucose levels. Total and LDL cholesterol levels tended to be higher in the preterm group, but these findings did not reach statistical significance. aIMT measurements did not differ between groups. All parameters were independent of current BMI percentile and gender. Conclusions In comparison to children born at term, former preterm infants have higher fasting glucose levels and show dyslipidemic cholesterol alterations at a preschool age. The relevance of these findings with regard to future cardiovascular health will be addressed by additional studies.

Background and aims Several studies have stated the association between higher left ventricular mass and impaired systolic and diastolic function in obese adults. However, little is known in paediatric population. The aim of this study is to assess how early changes appear in obese and normotensive patients.

Methods Anthropometric and biochemical measurements were taken in 130 normotensive children, 88 with obesity (age 11.0 ± 2.8 years) and 42 with normal weight (age 11.1 ± 2.7 years). The function and left ventricular (LV) mass was assessed according to the formula of Devereux and indexed for height².7 to obtain left ventricular mass index (LVMi). The E/E' value, quotient between transmitral early filling wave (E) and the average of the diastolic anular velocity (E') was calculated for estimating the left ventricular filling pressure, therefore diastolic function.

Results The obese group showed higher levels of LVMi than control group (43.6 ± 14.2 g/m² vs 36.3 ± 13.3 g/m², p = 0.020), and higher levels of ratio E/E' (6.03 ± 0.97 vs 7.24 ± 1.09, p < 0.001). The areas under the curve are 0.679 for LVMi and 0.757 for E/E'. Therefore, E/E' parameter is more valid than LVMi with respect the excess of BMI. The cut-off point to E/E' between obese and normal weight children was 6.55.

Conclusion In order to select one of the two main cardiac alterations found, diastolic function is a more sensitive/early finding than increased LV mass in obese normotensive children.
Biomarkers

Hypoxic-Ischemic Encephalopathy

A RATING SCALE (RS) FOR EARLY AND ACCURATE EVALUATION OF THE SEVERITY OF HYPOXIC-ISCHAEMIC ENCEPHALOPATHY (HIE)

1. A Garcia-Alia, 2M Girabent, 3A Alaniz, 4C Arca-Diaz, 5C Vega, 6I Anamez. Neonatology, Agapito Sanitaria Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain; 2Estadistica, Universidad Internacional de Catalunya, Barcelona, Spain; 3Neonatology, Agapito Sanitaria Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain; 4Neonatology, Hospital Universitario Burgos, Burgos, Spain

Background Clinical RS for HIE are intended to determine trial entry and to compare groups within or between trials. Categorical current schemes do not reflect the broad clinical continuum spectrum of HIE and they were not design for this task.

Objective To prospectively validate a new structured multi-item RS for HIE.

Methods A standardised structured ordinal RS for HIE with 7 clinical items (alertness, spontaneous motor activity, motor response elicited by stimuli, posture, myotatic reflexes, breathing and clinical seizures) and two aEEG items (background and electric seizures), scored by an asymmetric scale (0–8, with higher scores indicating more severe dysfunction) was designed.

The RS was scored in 75 term infants; 47 infants with HIE and in 28 control healthy infants by two blinded examiners within the first 8 h of life. Stages of HIE were established on the basis of our previous qualitative scheme.

Results There were no differences between both cohorts regarding gestational age, weight, and age at evaluation. The Intra-Class Correlation Coefficient of the RS was 0.969 in the group of HIE group and 0.930 in the control group. The Internal consistency (Cronbach’s alpha) was 0.897.

The ROC curves depicted that RS distinguished between HIE and control subjects (cut-off 3.5; AUC 0.89) and more importantly between the different stages of HIE: mild compared to moderate HIE (cut-off 7; AUC 0.981) and moderate compared to severe HIE (cut-off 30; AUC 0.920).

Conclusions Our RS for HIE appears to be valid, reliable and sensitive to reflect the severity of HIE.

URINARY BIOMARKERS MAY HELP PREDICT OUTCOME IN NEONATAL ENCEPHALOPATHY

1DU Sweetman, 2C Onwume, 3Y Donoghue, 4G Segurado, 5R Watson, 6EJ Molloy. Neonatology, National Maternity Hospital, Dublin, Ireland; 2Radiology, National Maternity Hospital, Dublin, Ireland; 3Biostatistics - CSTAR School of Public Health and Population Science, University College Dublin, Dublin, Ireland; 4School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland

Background Following a perinatal hypoxic-ischaemic insult, term infants are at risk of multi-organ injury including AKI. Infants with NE experience up-regulation of urinary cytokines which may reflect severity of brain injury.

Objective To investigate the association between novel urinary biomarkers and outcome in a group of term infants with NE compared to controls.

Methods Levels of urinary biomarkers [Albumin, B2M, Cystatin-C, EGF, NGAL, Osteopontin, Uromodulin] were serially measured over day 1–11 in a group of term newborns with NE and controls. These values were compared to grade of encephalopathy defined by Sarnat score.

Results Ten control and 82 cases had urine samples collected (Grade 0 NE = 7, Grade I NE = 22, Grade II NE = 24, Grade III NE = 11). Thirty-nine infants underwent TH, 4 infants died. Control infants had significantly lower B2M on day 1, NGAL on day 1–2 and significantly higher urinary EGF on day 2–3 and Uromodulin on day 3, compared with cases (p-values)

Conclusion Infants with NE have elevated urinary biomarkers compared to controls. Abnormal grade of encephalopathy is best predicted by day 2 urinary Cystatin-C and day 3 NGAL. Urinary biomarkers may have a role in long term outcome prediction following NE.

B-LINES IN LUNG ULTRASOUND IN NEWBORN S: COMPARISON WITH STATIC LUNG COMPLIANCE

1L Martelius, 2LS Juvarri, 2T Kirjavainen, 2S Andersson 1Children’s Hospital, Helsinki Medical Imaging Center/Helsinki University Central Hospital, Helsinki, Finland; 3Children’s Hospital, Helsinki University Central Hospital, Helsinki, Finland

Background and aims Vertical artefacts (B-lines) in lung ultrasound have been shown to correlate with lung liquid. In neonates the abundance of B-lines decreases after birth reflecting the decrease in the liquid content of the lungs. Static lung compliance, a sign of the elasticity of the lungs, improves after birth. Our aim was to study the correlation between static lung compliance and lung ultrasound in neonates.

Methods 24 healthy term infants were studied. Static lung compliance was measured by the double occlusion technique at the age of 0–4 h during silent sleep and regular respiration. Lung ultrasound was performed immediately after the compliance measurement. B-lines in ultrasound from six designated areas on the chest were scored on a 5-step scale to yield the US score.

Results Static lung compliance correlated significantly (p = 0.043, Pearson Correlation) with the abundance of B-lines in ultrasound.

Conclusion Our result supports the utility of lung ultrasound in estimating lung liquid.

DOES AMPLITUDE-INTEGRATED ELECTROENCEPHALOGRAPHY (aEEG) MONITORING ADD DIAGNOSTIC VALUE IN ASPHYXIATED NEONATES IN A NON-NICU SETTING?

1) Small, 2M Diender, 1C Wallhof, 1J Wesseling. Paediatrics, Rijnstate Hospital, Arnhem, Netherlands; 2Paediatrics, Academic University Medical Center, Nijmegen, Netherlands

Background and aims Asphyxiated neonates are at risk for developing hypoxic ischaemic encephalopathy and seizures. Although conventional electroencephalography (cEEG) is the standard method to detect subclinical seizures and encephalopathy, aEEG is a validated bedside screening tool used in routine clinical practice in many NICUs.