Background and aims The adaptive changes of the fetal heart in fetal growth restriction (FGR) could persist into childhood and be responsible for the increased cardiovascular mortality rate in adulthood. The aim of the study was to assess cardiac morphology and function in newborns with FGR.

Methods FGR was defined as a birth weight centtile ≤ 10. Prospective study of 50 neonates, 25 with FGR and 25 with normal intrauterine growth and weight at birth (Table 1). Comprehensive echocardiographic study was performed assessing cardiac morphology, systolic and diastolic function.

Results Compared with controls, neonates with FGR had more globular cardiac ventricles (Table 1), lower systolic excursions of the tricuspid and mitral valvular plane and lower values of the s' in the lateral and septal mitral annulus in the tissue Doppler imaging (TDI) study (p < 0.05). The e' at the tricuspid, lateral and septal mitral annulus together with the E wave of tricuspid inflow were significantly reduced in the FGR group; and tricuspid deceleration time showed a trend to increase without reaching statistical significance.

Conclusions Newborns with FGR manifest cardiac shape changes, reduced systolic values of the TDI at the left heart and lower values of diastolic function more pronounced at the right heart compared with neonates with normal intrauterine growth.

Electrical Cardiometry Stroke Volume Evaluation in NICU: Comparison with Functional Echocardiography

PS-021 van der Berg, O Jourdan, A Capderou, O Grollimuss, O De Luca, S Demontoux.1Pediatrics and Neonatal Critical Care, CHU Antoine Béclère South Paris University Hospital, Clamart, France; 2Pediatrics and Neonatal Critical Care Pediatric S. M. U. R, CHU Antoine Béclère South Paris University Hospital, Clamart, France; 3INSERM 999, South Paris University Hospital, Le Plessis Robinson, France; 4Centre Chirurgical Marie Lannelongue, South Paris University Hospital, Le Plessis Robinson, France

Background Evaluation of cardiac output in neonates might be difficult because of the complexity and risks of invasive classical procedures. New systems like electrical cardiometry (EC: Osypka Medical, Berlin, Germany and La Jolla, California, USA) have been proposed but few data are available in neonates. We investigated stroke volume (SV) using EC in term and preterm infants.

Methods Eligible patients were neonates admitted to the NICU and undergoing echocardiography for any clinical reasons, without congenital heart disease. We measured SV with EC and echocardiography, within 10 min. Measurements were repeated 6 times by the same operator to calculate repeatability before and after echocardiography. Data have been compared with correlation and Bland-Altman analysis.

Results 59 neonates were enrolled, allowing 150 paired measurements. Mean gestational age and birth weight were 33.9 ± 3.4 wks and 1988 ± 823 g, respectively.

Results of Pearson correlation and Bland-Altman analysis for the whole population were (r = 0.611; p < 0.0001) and (mean error [echo-EC] -1.35 mL [95% CI: -6.55 mL ± 3.85 ml]), respectively.

Correlation is maintained even with PDA (r = 0.627; p < 0.001).

Gestational age seems to do not influence the correlation between EC and echo (Partial correlation coefficient r = 0.36; p < 0.0001).

Repeatability (coefficient of variation) was 46% for EC and 52% for echocardiography. There was no difference in SV measured by EC after 10 min (3.76 ± SD vs 3.78 ± SD; p = 0.56, Wilcoxon test).

Conclusions EC is feasible, reproducible and quick. It could be an useful tool for continuous monitoring and haemodynamic evaluation in neonates. EC is particularly interesting for the clinical management of preterm neonates.