Background Preterm infants and especially very low birth weight (VLBW) preterms are prone to suffer from cardiac stress due to bronchopulmonary dysplasia (BPD) or hemodynamically significant patent ductus arteriosus (hsPDA). Tissue-Doppler imaging (TDI) based strain and strain rate measurements are ultrasound techniques that so far have not been used to assess cardiac function in this population.

Aim of this study was to assess TDI based strain and strain rate by in VLBW infants and their correlations with the infants' clinical courses within the first 28 days of life.

Methods We conducted ultrasonic measurements on days 1, 7, 14 and 28 of life in 119 preterm infants with a birth weight below 1500 g. We assessed peak systolic strain (PSS) and strain rate (PSSR) and compared these parameters depending on weight, weight at examination and heart rate as well as the presence of a PDA or development of BPD.

Results PSS and PSSR were significantly lower in infants with hsPDA who showed significantly lower values for left wall PSS on days 14 that only increased insignificantly after closure of the PDA. Incipient BPD was associated with significantly lower PSS in the right wall on days 14 and 28 of life.

Discussion Although BPD and hsPDA are highly intercorrelated in VLBW preterms, we were able to show that increased afterload due to BPD and increased preload due to PDA are associated with decreased PSS. Benefits of clinical applications, however, remain to be assessed.

Background Sick preterm neonates may have significant cardiac dysfunction. Blood pressure (BP) may be a surrogate marker however mean BP alone does not indicate the nature of myocardial dysfunction.

Aim To analyse biventricular myocardial velocities and myocardial performance indices (MPI) using tissue Doppler imaging (TDI) in preterm neonates <30 weeks gestation, with and without hypotension, in the first 24 h of life.

Methods 25 preterm neonates were recruited: 15 were normotensive and 10 were hypotensive. The hypotensive group (HT) received between 1 and 5 interventions (fluid and inotropes) till they were normotensive. Peak systolic (S'), early diastolic (E'), late diastolic (A) myocardial velocities and MPIs from the lateral annulus of the left and right atrio-ventricular valves were measured. Scans were performed after each intervention.

Results The left ventricular (LV) MPI was significantly higher in the hypotensive group compared to the normotensive group (p = 0.01) suggesting left ventricular dysfunction. Biventricular MPs decreased significantly when hypotension was corrected, indicating an improvement in myocardial function (RV p = 0.01, LV p = 0.05). Trans-mitral E' also showed an improvement following intervention for HT suggesting improvement in left ventricular relaxation (p = 0.02).

Conclusion Although our study is small we have demonstrated that hypotensive preterms have impaired left ventricular function. Myocardial function improved after intervention in the hypotensive group. More studies are needed to investigate the application of TDI as an adjunct in clinical decision making when managing preterm babies with hypotension.