Conclusion This data demonstrates that the proposed formula is safe, reliable and effective for the management of hypo- and hyperglycaemia in children with type 1 diabetes mellitus and should be implemented widely to improve safe practise. As it is patient specific and user-friendly, it allows parents/parents to feel in control over their diabetes and contributes to overall patient safety.

REFERENCE

G102[P] CASE REPORT: ATYPICAL PRESENTATION OF HYPERGLYCAEMIC HYPEROSMOLAR STATE IN A YOUNG TYPE 1 DIABETIC
do:10.1136/archdischild-2013-304107.114
AEJ Abshweyer, J Wasserman. Paediatrics (Endocrinology Division), Hospital for Sick Children, University of Toronto, Toronto, Canada

Aim To highlight the presentation and treatment of Hyperglycaemic Hyperosmolar Syndrome (HHS) presenting atypically in a paediatric diabetic patient.

Case history A previously well 5-year-old boy presented to his local hospital with loss of consciousness. He had a 10 day history of weight loss, polydipsia, polyuria and secondary nocturnal enuresis. He had been drinking large volumes of high sugar content juice. He also had 3 days of abdominal pain and multiple bouts of emesis on the day of presentation. He was found to be lethargic and was immediately transported to hospital. At the emergency department, he was minimally responsive (GCS = 3) and hypopnoeic. He was intubated and transferred to the ICU.

Initial blood glucose was 111 mmol/L. Venous Gas: PH 7.19, pCO245 mmHg, HCO3 15mmol/L, Lactate 3.8mmol/L. Serum Osmolarity 381mosm/L Na 135mmol/L, K 3.8mmol/L, Cl 95mmol/L, Creatinine 446mmol/L, Urea 22.5mmol/L, CPK 7351mmol/L. Urine ketones and serum toxicology screens were negative.

ICU course was notable for severe dehydration requiring copious fluid replacement. Hypotension required multiple inotropes. Hyperthermia requiring ice cooling developed; dantrolene was considered but not used. He had rhabdomyolysis and seizures. MRI showed abnormal FLAIR signal in the sub-cortical white matter of both occipital lobes. His hospital stay was complicated by left leg occlusive thrombus due to a femoral venous catheter. He needed physiotherapy to regain independent mobility.

Iset cell, anti-GAD and Insulin antibodies were positive, confirming Type 1 diabetes. C-peptide levels are pending.

Conclusion We present this case to highlight HHS as an unusual presentation and complication of Type 1 diabetes. The typical patient with HHS is an adult with established diabetes or an obese teenager of African descent. Our patient though black, did not fit this typical profile. HHS occurs less commonly than diabetic ketoacidosis in childhood diabetes although presenting features often overlap. Its management requires large fluid volumes to correct dehydration compared to fluid restriction in DKA. HHS is associated with greater mortality than DKA therefore, paediatricians need a high index of suspicion to diagnose and manage it effectively.

REFERENCES
fifteen year period. Data was collected on tumour site, histology, treatments used & endocrine complications.

70% of children underwent surgery, 87% received chemotherapy, 40% received cranial radiotherapy, 23% received craniospinal radiotherapy and 16% children received both cranial and craniospinal radiotherapy.

36% of survivors were diagnosed with growth hormone deficiency (all of these children had received radiotherapy). Impaired spinal growth was seen in all children who had received craniospinal radiotherapy, exacerbating short stature. 23% of children were found to have a suboptimal cortisol response; necessitating emergency hydrocortisone treatment. 20% of survivors developed hypothyroidism. Onset of hypothyroidism ranged from 1 to 5 years following treatment. 11% of survivors were diagnosed with precocious puberty; which in 1 case had masked a growth hormone deficiency.

In conclusion, this audit confirms the high prevalence of endocrine late effects in survivors of childhood brain tumours. Growth hormone deficiency was the most common, however there was a high percentage of multiple hormone deficiencies. Data support the establishment of a joint oncology and endocrinology late effects clinic; to ensure early identification and treatment of these serious complications.

Aims To assess cortisol levels in infancy and to determine whether low cortisol levels are indicative of pathology.

Methods A retrospective study of cortisol requests in patients aged up to 64 days for 20 months until August 2012 was undertaken. Data was collected on indications for testing, subsequent results and final outcome. Cortisol was measured using the Abbott Architect Analyser.

Results 47 patients had cortisol measured. The clinical indications were assessment of hypoglycaemia (n = 16), adrenal insufficiency (n = 15), jaundice (n = 11) and hypopituitarism (n = 7).

Cortisol was <100nmol/l in 19 patients: 7 had no further investigation; 3 proceeded directly to standard short synacthen test [SSST] and passed; 9 had repeat cortisol levels tested: 3 were above 100nmol/l and 5 out of the remaining 6 had further investigation (SSST or Corticotrophin Releasing Test [CRH]) which 3 passed.

For hypoglycaemia the median cortisol was 260nmol/l (range 42–793nmol/l). 1 patient with a random cortisol of 42nmol/l passed a SSST.

For investigation of adrenal insufficiency, the median cortisol was 182nmol/l (range 46–503nmol/l). 2 patients with random cortisols of 82 and 85nmol/l passed a SSST while a third with a level of 98nmol/l had a borderline SSST result.

For jaundice screen, the median cortisol was 132nmol/l (range <40–407nmol/l). One patient with a cortisol of 47nmol/l went on to pass a SSST.

For hypopituitarism, the median cortisol was 40nmol/l (range <40–146nmol/l). Four children in this group with baseline cortisol levels <40nmol/l proceeded to a SSST which 3 passed. A child with suspected septo-optic dysplasia and a baseline cortisol of 87nmol/l failed a CRH test. One infant with baseline of 69nmol/l underwent no further testing.

Results are illustrated in graph 1.

Conclusion Reviewing this cohort of 47 patients, 3 are now known to have cortisol deficiency. In 2, the random cortisol was less than 100nmol/l and they had additional clinical features. A 3rd patient has congenital adrenal hyperplasia, and the cortisol at presentation was 130nmol/l. Interpretation of a cortisol result must be undertaken with the clinical history and additional biochemical results and unless there are features indicating an underlying problem, a random low cortisol is not diagnostic.

Graph 1: Cortisol levels and indications for testing

Abstract G105(P) Graph 1