team. Majority (75%) of the handovers were presented by registrars/junior trainees with only 35% receiving any feedback.

SBAR (Situation, Background, Assessment and Recommendation) method was only used for 42% of handovers. Majority (70%) of the handovers were conducted with the aid of printed sheets, which included: patient demographics (83%), presenting complaints (85%), investigations, results and treatment plans (83%). Only 11% of handovers were done electronically. Handovers had allocated start times (96%) with designated places (89%) close to area of work. However only 65% of the handovers started on time, 20% were free from distractions by allied professionals and just 5% were ‘bleep’ free. 68% had some educational activity within the time allocated in the handover. WPBAs were initiated or completed in only 11% of handovers. Overall 91% of trainees felt that the quality of handover was either average or good.

Conclusions The findings from our survey suggest that the quality of handovers is variable. Handovers should have a structured approach and free from distractions to ensure safety and continuity of care. Incorporating formal teaching and WPBA’s could help develop the role of handovers.

Results

1. All rotating registrars have had exposure to pigtail chest-drain insertion in simulation setting and subsequently went on to undertake these skills in NICU on real patients with greater confidence.
2. Improved team working observed between doctors and nursing staff on NICU

Conclusions Our method of manikin manipulation is innovative, affordable and effective and can be implemented in any hospital setting to teach practical neonatal skills, improve team working, enhance competency at performing practical skills and work with increased confidence.

Clinical Genetics Group/British Society of Paediatric Dermatology

G24

CAPILLARY MALFORMATIONS – ARTERIOVENOUS MALFORMATIONS/ARTERIOVENOUS FISTULA SYNDROME (CM-AVM SYNDROME): AN UNDER RECOGNISED CLINICAL ENTITY?

doi:10.1136/archdischild-2013-304107.037

1. Thanopoulou, IS Bhat, IN Burrows, IJ Berg, IM Glover. Paediatric Dermatology, Great Ormond Street Hospital, London, UK; 2Paediatric Neurology, Great Ormond Street Hospital, London, UK; 3Neuroradiology, Addenbrookes Hospital, Cambridge, UK; 4Clinical Genetics, Ninewells Hospital And Medical School, Dundee, UK

Background Hereditary Hemorrhagic telangiectasia (HHT) tends to be the first condition to be considered in the differential diagnosis of patients presenting with high flow vascular malformations in combination with cutaneous vascular lesions. However, particularly in the paediatric population, capillary malformation-arteriovenous malformation syndrome (CM-AVM) due to RASA-1 mutation is more likely.

Aims To present the clinical features of three patients with CM-AVM syndrome, promote knowledge of this condition and aid prompt diagnosis.

Methods Clinical examination, detailed family history, imaging (ultrasound, MRI, angiography) and genetic testing.

Results Patient 1 was born with a large vascular mass affecting the right side of the face and multiple cutaneous capillary malformations. Patient 2 had a spinal AV fistula and two vascular stains. Patient 3 presented with an intracranial haemorrhage secondary to a parietal AVM and was noted to have several cutaneous vascular lesions. Patients 2 and 3 were referred to the dermatology team as suspected HHT. The cutaneous vascular lesions present in all three patients were consistent with capillary malformations (in keeping with a diagnosis of CM-AVM) and were not typical of telangiectases.

Conclusion In patients with high flow CNS vascular lesions, it is crucial to establish the precise nature of cutaneous vascular lesions in order to request appropriate genetic testing and screening of relatives.

REFERENCE

1. Laurence M Boon, Nicole Revenu, Mikka Vlkula, Université catholique de Louvain, Brussels, Belgium.

G25

RASA1 MUTATIONS AND VEIN OF GALEN ARTERIAL MALFORMATIONS

doi:10.1136/archdischild-2013-304107.038

1. AM Heuchan, S Joss, IJ Berg, IM Suri, J Bhattacharya. Neonatal Medicine, Royal Hospital for Sick Children, Glasgow, UK; 2Clinical Genetics, Royal Hospital for Sick Children and Southern General Hospital, Glasgow, UK; 3Clinical Genetics, Ninewells Hospital, Dundee, UK; 4Clinical Genetics, Nottingham University Hospital, Nottingham, UK; 5Neuroradiology, Southern General Hospital, Glasgow, UK