above 1.5µV, for longer than 1s. Each EEG channel was processed separately and the final outcome was considered to be an activity burst if a burst was detected in 2 or more channels.

The method was tested on a database of 24 babies born before 30 weeks gestation (avg 26.5 ± 1.7 weeks). For each baby 10 minutes of 8-channel EEG signal was analysed.

Results Agreement with the expert burst annotations was on average 77.2% over the 24 subjects (Min:59.6%, Max:90.3%, std-dev:8.5%). Most errors consisted of disagreement over the precise start and end points of a burst.

Conclusions Automatic burst detection has been applied for the first time to a large database of preterm 8-channel EEG. Promising results were obtained for automated EEG interpretation. Future work will attempt to reduce the error by use of more sophisticated methods to merge the per-channel detections.

We hypothesized that hypoxic-ischemic lesion on brain MRI would differ between infants with AKI compared to those without AKI following cooling.

Methods 88 consecutively cooled infants who had brain MRI were reviewed. All infants had renal function assessed before the start of cooling (baseline); at 24, 48, and 72h through cooling; and then on day 5 or 7 of life. Injuries to both basal nuclei and cortex on MRI were considered severely abnormal.

Results AKI was found in 34 (39%) of 88 infants with 15, 7, and 12 fulfilling AKI network criteria for stage I, II, and III, respectively. Hypoxic-ischemic lesion on brain MRI was present in 50 infants. In 26 infants (AKI 14, no AKI 12), MRI was severely abnormal.

Abnormal MRI was more frequent in the AKI group (AKI 25 of 34, 75% versus No AKI 25 of 54, 46%, p=0.012, OR 3.2, 95% CI 1.3–8.2). Multivariate analysis identified only the AKI (p=0.032, OR 2.9, 95% CI 1.1–7.6), and chest compression for resuscitation to be independently associated with primary outcome.

Severely abnormal MRI were similar between infants with stage III and stage II AKI (stage III 3 of 12, 25% versus stage II 3 of 7, 43%; p=0.617), or stage I AKI (stage III 3 of 12, 25% versus stage I 8 of 15, 53%; p=0.238).

Conclusions AKI is independently associated with the presence of hypoxic-ischemic lesions on post-cooling brain MRI. However, the severity of AKI did not correlate with the severity of brain MRI abnormalities.

Methods High-density (109-channel) recordings were performed for subsequent event-related potentials (ERPs) analysis on newborns while listening to their mother’s voice and the voice of an unknown woman saying a short phrase. Two groups were tested: premature newborns tested at TEA (GA:28.7wks) and full term controls (GA:40wks).

Results For preterm babies, the ERP results showed significant differences on left temporal electrodes when they listened to their mother’s voice compared to a stranger’s voice with an increased negativity at 100ms post voice onset (t-test; p<0.05). At later stages of voice processing, significant differences were found between 220–320ms with increased positivity for the mothers voice over right temporal electrodes.

Conclusions By showing specific activation in preterm babies at term when they listen to their mother’s voice, our results suggest that the maturation of the auditory network can be influenced by these early experiences resulting in an early differentiation between their mother’s voice and the voice of a stranger.

Abstract 336 Figure 1
Conclusion Arterial Spin Labeling MR imaging can be used to evaluate (luxury) perfusion in the stroke area after PAIS. In the future, relations between ASL imaging findings and outcome should be drawn.

CEREBROSPINAL FLUID FLOW QUANTIFICATION OF THE CEREBRAL AQUEDUCT IN CHILDREN AND ADULTS WITH TWO-DIMENSIONAL CINE-PHASE-CONTRAST CINE MR IMAGING

doi:10.1136/archdischild-2012-302724.0337

Background and Aims Cerebrospinal fluid (CSF) is known mainly involved in the intracranial homeostatic balance. Disruption of CSF flow may cause distinctive diseases. Therefore, the characterization of normal CSF flow dynamics in children and adults can provide pathophysiological information on diseases affecting CSF circulation. However, available measurements of CSF dynamics are too invasive and the data of children are limited. To quantify differences of CSF dynamics between children and adults, a non-invasive and powerful technique, cine phase-contrast MRI with high temporal and spatial resolution, is used for the quantification of the CSF flow.

Methods Aqueductal area was selected for the quantification of CSF flow using cine-phase contrast MRI. CSF flow parameters, including peak velocity and net stroke volume, were analyzed between child-age group and adult-age group.

Results 20 children (16 male, 4 female; 7 months to 6 years) with initially under suspicion of atypical febrile seizure and finally proved normal by CNS imaging and clinical investigations were enrolled. The peak CSF flow velocity in the cerebral aqueduct of children were 200.0±66.64 µl/s, and the mean net stroke volume is 15.07±7.42 µl/heart beat. Comparing the results in 10 normal adults (5 male, 5 female; 25 to 56 years) with the mean peak velocity of 100.86±18.13 µl/s and the net stroke volume of 5.09±0.56, data of children are significantly higher than that in adults.

Discussion The value of these flow parameters in children is significantly different from that in adults. Therefore, the age of a patient should be taken into consideration while interpreting these parameters.

NUTRIENT FOR NEUROPROTECTION: MRI ASSESSMENT OF LACTOFERRIN SUPPLEMENTATION AFTER HI INJURY IN THE P3 RAT BRAIN

doi:10.1136/archdischild-2012-302724.0338

Background Animal models of preterm brain injury can be achieved by Hypoxia-Ischemia (HI). Lactoferrin (Lf) is an iron-binding glycoprotein with anti-oxidant, anti-inflammatory and anti-infectious activities. In rodents, after oral administration, Lf is mainly involved in the intracranial homeostatic balance. Disruption of Lf metabolism may cause distinctive diseases. Therefore, the characterization of normal Lf metabolism in children and adults can provide pathophysiological information on diseases affecting CSF circulation. However, available measurements of Lf metabolism are too invasive and the data of children are limited. To quantify differences of Lf metabolism between children and adults, a non-invasive and powerful technique, cine phase-contrast MRI with high temporal and spatial resolution, is used for the quantification of the Lf flow.

Methods Aqueductal area was selected for the quantification of Lf flow using cine-phase contrast MRI. Lf flow parameters, including peak velocity and net stroke volume, were analyzed between child-age group and adult-age group.

Results 20 children (16 male, 4 female; 7 months to 6 years) with initially under suspicion of atypical febrile seizure and finally proved normal by CNS imaging and clinical investigations were enrolled. The peak Lf flow velocity in the cerebral aqueduct of children were 200.0±66.64 µl/s, and the mean net stroke volume is 15.07±7.42 µl/heart beat. Comparing the results in 10 normal adults (5 male, 5 female; 25 to 56 years) with the mean peak velocity of 100.86±18.13 µl/s and the net stroke volume of 5.09±0.56, data of children are significantly higher than that in adults.

Discussion The value of these flow parameters in children is significantly different from that in adults. Therefore, the age of a patient should be taken into consideration while interpreting these parameters.

SPONTANEOUS CORTICAL AROUSALS IN HEALTHY TERM NEWBORN INFANTS DURING QUIET SLEEP

doi:10.1136/archdischild-2012-302724.0339

Background and Aims Arousal from sleep is an important survival mechanism. During sleep-EEG monitoring in healthy term infants we observed that the majority had frequent spontaneous jerky movements (SJMs), resembling a Moro reflex, during quiet sleep (QS) followed by periods of marked EEG attenuation. This phenomenon was considered a spontaneous cortical arousal (SpCA). In this study we describe and quantify the observed phenomenon, and investigate factors that influence it.

Methods Video-EEG recordings of healthy term infants, aged 1 to 36 hrs, were examined for the presence of SpCAs associated with SJMs. Bursts of EEG activity associated with a SJM (B(SJM)) and subsequent lower voltage periods (LV(SJM)) of EEG attenuation were identified and labelled on each recording. These were compared to a similar pattern of bursts (B) and lower voltage (LV) periods of “normal” Tracé Alternant (TA) with no SJMs. An arousal index (AI(SJM)) was calculated as the number of SpCAs per hour of QS. Factors that influenced the AI(SJM) were investigated.

Results Eighty-seven video-EEGs were analysed. SJMs occurred during bursts of TA and were followed by significant EEG amplitude attenuation (median amplitude of LV(SJM) = 7.8 µV versus LV = 12.8 µV, p<0.001). The median AI(SJM) was 23.9. A significant negative correlation was observed between the AI(SJM) and infant’s birth weight (p=0.015). A trend towards a lower AI(SJM) was observed with increasing gestational age (p=0.06).

Conclusion SJMs followed by periods of EEG attenuation signify SpCAs in healthy term newborns and may represent a normal developmental phenomenon.

PRETERMS ≤ 32 WEEKS HAVE MORE FAT TISSUE AT 35 WEEKS CORRECTED AGE THAN NEAR TERM BORN AT 35 WEEKS

doi:10.1136/archdischild-2012-302724.0340

Background Early aggressive nutrition followed by enriched preterm style enteral feeding is considered the standard of care in neonatal intensive care units (NICU) and results in good neurological...