Background As known, the main cause of IUGR is uteroplacental insufficiency accompanied by continuous hypoxia. The fetal circulatory response to hypoxia is a rapid centralization of blood flow into the brain, heart and adrenals at the expense of almost all peripheral organs, particularly the kidneys and intestines.

Aim To determine whether the IUGR has an influence on renal and intestinal function due to hypoxia-ischemia in the early neonatal period.

Material and Methods 39 preterm newborns (GA 29–36 weeks) have been studied. We compared IUGR (n=20) and non-IUGR newborns (n=19). Plasma and urine samples were taken on the 1st, 3rd and 7th day of infant’s life. KIM-1, UNAGL and plasma TFF-3 concentration were assayed by IFA method.

Results Comparing the two group levels of unNGAL, KIM-1 and TFF-3 were significantly increased in IUGR group (39.9±4.7 vs 25.8±6.5 ng/dl), (1.6±0.2 vs 0.8±0.1 ng/dl) and (58.1±1.5 vs 20.7±0.9 ng/dl) in the first three days of life. Considerable decrease in the concentration of TFF-3 was observed on the 7th day of the study (26.5±1.5 vs 23.4±2.6 ng/dl).

Conclusion Increase of KIM-1 and NGAL demonstrate high risk of hypoxic-ischemic renal injury in IUGR infants, and high level of TFF-3 reflects compensatory mechanisms in intestine in response to tissue hypoxia, but decreased level of TFF-3 in the dynamics is an evidence of failure and rapid depletion of the protective mechanisms in IUGR newborns.

Conclusions The Badger system has tremendously improved our ability to monitor trends in the major outcome of premature babies in SWMNN. This will help in improving the quality of care and resource allocation. The major limitation of such a system is that the quality of the data is dependent on the information entered in the first place. Therefore, we need to ensure the accuracy and completeness of the data entered.

Abstract 1284 Table 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n admissions < 31+0 weeks</td>
<td>437</td>
<td>423</td>
<td>860</td>
</tr>
<tr>
<td>n ventilated [%]</td>
<td>301 (68.8%)</td>
<td>287 (67.8%)</td>
<td>588 (68.3%)</td>
</tr>
<tr>
<td>n with CLD at 36 weeks CGA [%]</td>
<td>78 (17.8%)</td>
<td>62 (14.5%)</td>
<td>140 (16.2%)</td>
</tr>
<tr>
<td>n discharged home on oxygen [%]</td>
<td>20 (4.5%)</td>
<td>28 (6.5%)</td>
<td>48 (5.5%)</td>
</tr>
<tr>
<td>n with NEC [%]</td>
<td>111 (25.4%)</td>
<td>102 (24.1%)</td>
<td>213 (24.7%)</td>
</tr>
<tr>
<td>n with NEC that had surgery [%]</td>
<td>15 (3.4%)</td>
<td>21 (4.9%)</td>
<td>36 (4.1%)</td>
</tr>
<tr>
<td>n survived to discharge [%]</td>
<td>375 (85.8%)</td>
<td>382 (90.3%)</td>
<td>757 (88.0%)</td>
</tr>
</tbody>
</table>

Conclusion The Badger system has tremendously improved our ability to monitor trends in the major outcome of premature babies in SWMNN. This will help in improving the quality of care and resource allocation. The major limitation of such a system is that the quality of the data is dependent on the information entered in the first place. Therefore, we need to ensure the accuracy and completeness of the data entered.

1285 DEVELOPMENTAL DYSPLASIA OF THE HIP (DDH) AND MATURATION OF HIP JOINT: ANALYSIS IN UNSELECTED ITALIAN PEDIATRIC POPULATION

doi:10.1136/archdischild-2012-302724.1285

C Casini, C Bianchini, V Negro, F Biagarelli, R Zambardi, C Filippelli, C Pacchiarotti, D D’Onofrio, MP Villa. Sapienza University of Roma, Roma, Italy

Background Developmental Dysplasia of the Hip (DDH) is an abnormal growth of the hip structures, regarding both osseous and soft tissues. While different factors are strongly associated and the overall frequency reported is between 1 and 5 cases per 1000, its etiology and prevalence are not well established.

Aim Aim of our study was to assess the relationship between the presence of hip ossification core and hip dysplasia and to evaluate the overall prevalence of this disorder among our population.

Methods The same examiner performed hip ultrasonography (US) to all babies, using Graf method and a questionnaire about biological data was administered to all parents.

Results 947 US were performed to all patients between the 2nd and the 22nd week of life (493 male, 454 female) 934 US were normal, 10 showed physiological hip immaturity, only 3 demonstrated pathological hip conformation (2 with IIC grade and 1 with IV grade). The presence of hip ossification core doesn’t correlate with DDH, nutritional factors and fetal presentation but had a strong relationship with birth weight and female sex.

Conclusions Our data about the prevalence confirmed the previous results, (3.1/1000): The presence of hip ossification core is not related with DDH.

1286 ASSESSMENT OF RENAL AND INTESTINAL TISSUE CONDITION OF IUGR INFANT

doi:10.1136/archdischild-2012-302724.1286

AA Akhundova, 1NF Panahova, 1SS Hasanov, 1SA Gulieva, 1NN Hajeieva. 1Neonatology; 2Azerbaijan Medical University, Baku, Azerbaijan

Background As known, the main cause of IUGR is uteroplacental insufficiency accompanied by continuous hypoxia. The fetal circulatory response to hypoxia is a rapid centralization of blood flow into the brain, heart and adrenals at the expense of almost all peripheral organs, particularly the kidneys and intestines.

Aim To determine whether the IUGR has an influence on renal and intestinal function due to hypoxia-ischemia in the early neonatal period.

Material and Methods 39 preterm newborns (GA 29–36 weeks) have been studied. We compared IUGR (n=20) and non-IUGR newborns (n=19). Plasma and urine samples were taken on the 1st, 3rd and 7th day of infant’s life. KIM-1, UNAGL and plasma TFF-3 concentration were assayed by IFA method.

Results Comparing the two group levels of unNGAL, KIM-1 and TFF-3 were significantly increased in IUGR group (39.9±4.7 vs 25.8±6.5 ng/dl), (1.6±0.2 vs 0.8±0.1 ng/dl) and (58.1±1.5 vs 20.7±0.9 ng/dl) in the first three days of life. Considerable decrease in the concentration of TFF-3 was observed on the 7th day of the study (26.5±1.5 vs 23.4±2.6 ng/dl).

Conclusion Increase of KIM-1 and NGAL demonstrate high risk of hypoxic-ischemic renal injury in IUGR infants, and high level of TFF-3 reflects compensatory mechanisms in intestine in response to tissue hypoxia, but decreased level of TFF-3 in the dynamics is an evidence of failure and rapid depletion of the protective mechanisms in IUGR newborns.

Conclusions Our study showed that the mean time of cord separation was the shortest for group one (6.40±1.36 day) and the longest for groups 3 and 6 (9.58±4.07 days) (p<0.001). Omphalitis was detected in eight patients (1.9%) and there was no significant difference between the groups. There was no relationship between umbilical cord separation and incidence of umbilical cord infection (p>0.05).

Conclusion Our study showed that the mean time of cord separation was significantly shorter (6.40±1.36 days) in the dry cord care group and the longest in both chlorhexidine groups. However, cord separation time did not have an impact on the rate of omphalitis.

1287 DOES CORD SEPERATION TIME HAS AN EFFECT ON OMPHALITIS?

doi:10.1136/archdischild-2012-302724.1287

1H Özdemir, 1H Bilgen, 1S Coskun, 2A Topuzoglu, 2A Iki, 2G Soylerit, 2E Dzek. 1Marmara University School of Medicine Department of Pediatrics, Neonatology; 2Marmara University School of Medicine, Department of Public Health; 3Marmara University School of Medicine, Department of Microbiology, Istanbul, Turkey

Background and Aim There is still controversy regarding the optimal umbilical cord care and the relationship between cord separation and omphalitis. The aim of our study is to investigate the impact of different umbilical cord care practices on the cord separation time and omphalitis.

Methods We included 514 newborns and randomly randomized them into six groups (Group 1: dry care (n:72); groups 2 (n:69), groups 3 (n:69) and 4 (n:76): a single application of 70% alcohol or 4% chlorhexidine in the delivery room and continued until discharge) (n:73) and 6 (n:62): a single application of 70% alcohol, 4% chlorhexidine or povoniodine in the delivery room, groups 5 (n:75) and 6 (n:62): a single application of 70% alcohol or 4% chlorhexidine in the delivery room and continued until discharge) and 421 of them completed the study. Umbilical cord was examined on the 2nd day and between 5–7 days of life for the signs of omphalitis. Babies were followed up for one month and cord separation time was recorded.

Results Cord separation time was the shortest for group one (6.40±1.36 day) and the longest for groups 3 and 6 (9.58±4.07 days) (p<0.001). Omphalitis was detected in eight patients (1.9%) and there was no significant difference between the groups. There was no relationship between umbilical cord separation and incidence of umbilical cord infection (p>0.05).

Conclusion Our study showed that the mean time of cord separation was significantly shorter (6.40±1.36 days) in the dry cord care group and the longest in both chlorhexidine groups. However, cord separation time did not have an impact on the rate of omphalitis.