Results

Hyperoxia induced severe lung damage as evidenced by cell infiltration, edema and fibrosis which were reduced significantly by CDP-choline treatment. Radial alveolar count and lamellar body protein expression were significantly recovered, while number of TUNEL-positive cells and active Caspase-3 expression were decreased by CDP-choline administration. Tissue proinflammatory cytokine (IL-1β, IL-6 and TNF-α) levels as well as tissue MDA content and MPO activities were reduced, whereas GSH-Px and SOD activities were preserved in hyperoxia+CDP-choline group.

Conclusions

Our data show for the first time that parenteral CDP-choline administration prevents hyperoxic lung injury in a neonatal rat model of BPD. It may therefore be suggested that CDP-choline can be used as an effective therapeutic agent for prevention of BPD in case it exhibits similar effects in humans.

Background and aims

The human brain is highly susceptible to the consequences of preterm birth. Cognitive tasks vary in complexity and resource requirements, thus performance on tasks with different demands may provide information on specific cognitive differences in children related to the degree of prematurity. Mathematical performance requires simultaneous processing of information which is particularly compromised in preterm children. Our aim was to investigate the relationships between task complexity and incremental performance deficits across the full spectrum of gestational age (GA).

Methods

1,513 children ranging from 27 to 43 weeks GA were studied from birth to 8; 5 years as part of a prospective geographically defined longitudinal investigation of neonatal at-risk children in South Germany (Bavarian Longitudinal Study). Children’s cognitive performance at 8; 5 years was measured with K-ABC subtests Number recall, Pattern reasoning, and Calculating and with a standardized mathematics test.

Results

Results were twofold:

1. Preterm children showed incremental performance deficits with increasing task complexity
2. There was a curvilinear relationship between GA and task performance with a point of change around 32 weeks of GA.

In general, every lost week of gestation increased the adverse impact on performance. However, this relationship was strongest among tasks which required the highest cognitive workload.

Conclusions

With increasing cognitive workload preterm children fall behind in test scores. This suggests that brain organisation or damage limits cognitive resources. The relationship between GA and task performance is curvilinear. Our approach may offer a theoretical foundation to scrutinize the cognitive characteristics of the preterm phenotype.

Background and aims

Despite the dramatically increased survival rates for very preterm (gestational age ≤ 30 weeks) infants, these children’s developmental outcomes remain of significant concern. A majority of non-disabled very preterm children with IQs in the average range have substantial academic and behavior problems, of which deficits in mathematics and symptoms of inattention are the most pronounced. Executive function may be an important mechanism underlying these problems, an issue only scarcely examined and aim of this study.

Methods

Two-hundred non-disabled very preterm (mean age = 8.2±2.5) and 250 term children (mean age = 8.3±2.3), all born between 1996 and 2004, were assessed with measures of mathematics/arithmetic (Dutch Pupil Monitoring System), and executive function in preschool and in primary school. Parents and teachers reported on attention problems using the Achenbach behavior questionnaires and the Disruptive Behavior Disorders Rating scales.

Results

Very preterm children had significantly more mathematical and attention problems than term children (SMD’s > 0.46). IQ significantly predicted mathematical problems (βs > 0.15, Ps < 0.04). Executive functioning, in particular spatial span and inhibitory control, was, over and above IQ, significantly predictive for mathematical problems (βs = 0.11, P=0.005) and attention problems (βs > 0.17, P < 0.001) in primary school. Associations were stronger for very preterm than for term children.

Conclusions

Very preterm birth is associated with medium-sized deficits in mathematics and attention problems. Impaired executive function and IQ scores are important predictors for these adverse outcomes.

Background and aims

Pharmacokinetic and clinical efficacy of phenobarbital in asphyxiated newborns treated with therapeutic hypothermia

Methods

Data were obtained from a prospective study in two Dutch level III NICUs (SHIVER-study). Term born newborns with criteria of perinatal asphyxia and encephalopathy were included. Therapeutic hypothermia (33.5°C) was started within 6 hours after birth and was maintained for 72 hours. Pharmacokinetic modelling was performed using NONMEM.

Results

In total, 31 term-born newborns were included of which 87 plasma samples were obtained (69 samples during the hypothermic phase). Based on a one-compartmental model with allometric relationships, clearance and distribution volume were estimated at 17.2 mL/h/3.5kg and 3450 mL/3.5kg respectively. No relationship between hypothermia and pharmacokinetic parameters was identified. Overall, 66% of all neonates demonstrated sufficient seizure control with phenobarbital monotherapy, even though 69% of all measured concentrations were below 20 mg/L. In 88% of neonates...
with recurrent seizures during phenobarbital therapy, plasma concentrations were predicted to be <20 mg/L at the moment of recurrent seizures. This supports a minimal effective concentration of about 20 mg/L.

Conclusion Also during hypothermia we advise an initial 20 mg/kg loading dose. However, clinicians should not be reluctant to administer an additional dose of 10–20 mg/kg, as we have shown that the blood levels were often below the therapeutic range (20–40 mg/L).

132 EARLY LIPID AND HIGH DOSE AMINO ACID ADMINISTRATION INCREASES ANABOLISM IN VLBW INFANTS

Introduction The beneficial effects of early nutrition in preterm infants are well known. Nonetheless, almost all VLBW infants (BW< 1500g) develop a protein and energy deficit in the first week of life. Consequently, protein balance is impaired. Lipids could aid in ameliorating the protein balance.

We hypothesized that early parenteral lipid and high dose amino acid (AA) administration from birth onwards to VLBW infants is safe and results in a higher protein balance.

Methods Inborn VLBW infants were randomized to one of three different parenteral nutritional regimens (Figure).

Abstract 132 Figure 1

Nitrogen (N) balances and urea rate of appearance ([urea]Ra, subgroup of infants) were measured at day two; biochemistry was recorded daily.

Results Table shows significant differences at day 2.

133 PHYSIOLOGY OF THE AIRWAY AND ITS CONTROL

Nature, Key Functions, Neural Control & Clinical Impact.

The airway is a dynamic conduit, extending from the nose to the air sacs. Its key functions include protection, volume maintenance and ventilation, which are coordinated with other motor acts. Neural control of motor output provides airway defense as a first priority, with rapid protection of the lower airway being afforded by appositional muscle and central apnea. During breathing, stability of airway volume (patency) and gas flow with ensuing gas exchange are also coordinated centrally via coordination of motor activities that interact with physiological (structural) mechanisms. Sensors rapidly relay information about all key motor functions and, if required, this monitoring results in within-breath pattern adaptations. Neural control of the airway is not only dynamic but varied, with many motor output patterns noted during development and in different physiological (e.g. sleep) and pathological states. The clinician uses this knowledge to interpret breathing patterns as normal or abnormal, and uses this synthesis to direct both investigation of the airway and/or its central control and therapy.

Review aims This talk will describe
• nasal functions for protection and airway patency
• obstructive sleep apnea and the effects of CPAP therapy
• coordination of sucking, nutritive and non-nutritive swallowing in breathing
• laryngeal muscle functions in eupnea, sighs, grunting, incremental breathing and gasping
• lower airway patency and hysteresis matching of conducting and parenchymal airways
• central control of breathing and the impact of changes in breathing with behavioral state.

134 OBSTRUCTIVE SLEEP APNEA, HYPERTONUS AND ADIPOSITAS

Obstructive sleep apnea (OSA) is characterized by prolonged partial and/or intermittent complete (apnea) or partial (hypopnea) upper airway obstructions. The disruption of normal ventilation can be associated with hypoxemia and abnormal sleep patterns. OSA occurs predominantly during REM-sleep. Most affected children present with snoring and breathing problems during sleep.

The prevalence of OSA in children is approximately 4%. OSA can be associated with daytime sleepiness and cognitive/behavioral complications like poor school performance and hyperactivity. Cardiovascular complications include pulmonary hypertension, cor pulmonale, and systemic hypertension. There is a significant association between apnea-/hypopnea-index (AHI) and oxygen desaturation index with raised daytime and nocturnal blood pressure.

There is an increasing prevalence of obesity in children. Obesity can interfere with sleep in different ways. A lack of sleep is associated with an increased risk for obesity. On the other hand, obesity can have a negative influence on sleep. An increased soft tissue mass and altered mechanics lead to an increased airflow resistance, causing upper airway obstruction. With the current epidemic of obesity the incidence of OSA due to obesity in younger children may become remarkable. The risk for systemic hypertension caused by obesity is independent from the risk for hypertension caused by obstructive sleep apnea.