Preterm children experience a high prevalence of long-term serious cognitive deficits. Fetuses of 23 weeks of gestational age are now viable. Subsequent physiological stress can seriously disrupt the maturational processes that lay down this architecture. The ensuing abnormalities in brain may then contribute to the long term cognitive deficits. We aimed to measure regional brain volumes on the magnetic resonance imaging of prematurely born 9-year-old children and group matched term children. Nineteen nine year old preterm children and 21 term children recruited for the study. All subjectwent under the volumetric magnetic resonance imaging. In the neurocognitive assessment, it was observed that preterm children had impairments in visuospatial functioning, three- dimensional thought ability, data processing and learning speed, executive function, complicated executive attention, perseveration, working memory, abstract thinking, installation replacement, focused attention. Volumes of cerebellum, right and left caudate nucleus, right and left putamen, right and left globus pallidus. Right and left hypothalamus and corpus callosum were significantly smaller in preterm children. There was a correlation between cerebellar volume and executivefunction, harmony in social life, importance given to attentionand detail, visuospatial disorder and verbal IQ, hippocampal volume and attention, arithmetic, verbal and performance IQ, bilateral caudate nucleus volume and full scale IQ score, vocabulary and speech skills, time in event processing, three dimensional thinking and verbal IQ scores.

Our data indicate that preterm birth is associated with regionally specific, long term reductions in brain volume, in turn lead to poorer cognitive outcome.

FA-VALUES IN THE PLIC AT TERM EQUIVALENT AGE ARE ASSOCIATED WITH NEURODEVELOPMENTAL OUTCOME AT TWO YEARS CORRECTED AGE

doi:10.1136/archdischild-2012-302724.1253

K Kersbergen, N Wagenaar, B Van Kooij, F Groenendaal, LS de Vries, M Benders. Neonatology, Wilhelmina Children’s Hospital/UMC, Utrecht, The Netherlands

Microstructural changes in white matter (WM) can be detected by Diffusion Tensor Imaging (DTI). This study tests the hypothesis that Fractional Anisotropy (FA) in the posterior limb of the internal capsule (PLIC), as measured directly on the FA-maps in preterm infants ATE is correlated to neurodevelopmental outcome at two years corrected age.

Methods MRI at term was performed in 66 preterm infants (GA<32wks). Using colour-coded DTI maps, FA-values were assessed in the PLIC. Regions of interest (ROI’s) were manually positioned in the PLIC bilaterally at the level of the foramen of Monro. FA-values from these ROI’s were assessed in relation to scores for cognition, fine and gross motor outcome measured with the Bayley Scales of Infant and Toddler Development (BSID)-III. Correlations were corrected for clinical factors.

Results FA-values in the left PLIC were correlated with cognition (r=0.435, p<0.05), fine motor (r=0.335, p<0.05) and gross motor (r=0.337, p<0.05) outcome at two years corrected age. There was no such association for the right PLIC. After correction for gender, the correlation persisted only in boys. Postmenstrual age (PMA) and WMI were both significantly correlated with FA values in the left PLIC (resp r=0.253, p<0.05 and r=-0.368, p<0.05).

Conclusion FA-values measured by ROI-analysis ATE are significantly correlated with neurodevelopmental outcome at two years. This is in agreement with studies that used advanced post-processing techniques to measure diffusion parameters. These measurements in this study are easy to perform, reproducible and directly applicable on MRI data and therefore particularly eligible for use in clinical care.

FUNCTIONAL ALTERATIONS OF THE HIPPOCAMPUS IN IUGR

doi:10.1136/archdischild-2012-302724.1255

I Camprubi Camprubi, JA Ortega Cano, C Duran Fernandez-Feijoo, I Iglesias Platas, A Ortega, K Krauel, S Alcantara. 1Neonatology, Hospital Sant Joan de Déu, Universitat de Barcelona; 2Department of Experimental Pathology and Therapeutics, School of Medicine, University of Barcelona; 3Departamento de Celulas Troncales, CIBIMER, Universidad Pablo de Olavide, Barcelona, Spain

Introduction Intrauterine growth restriction (IUGR) has been shown to relate to later neurodevelopmental problems. Recent studies suggest that deficits in spatial memory are the most prevalent among these individuals. The hippocampus, a key structure in spatial orientation, is susceptible to hypoxia or stress during pregnancy,