Aim To determine influence of oxygen support on diameter and flow rate through the pulmonary artery in preterm infants by echocardiography.

Methods The study was conducted in tertiary health institution (Pediatric Clinic, KCU Sarajevo), the Neonatal intensive care unit between November 2011th and February 2012th. Examinees were divided into three groups, depending on the type of oxygen support: infants on conventional mechanical ventilation, CPAP by continuous positive pressure and indirect oxygen. It was performed echocardiography measuring of pulmonary artery dimensions and the maximum flow rate. Standard echocardiography methods were used. One-dimensional M mode and Two-dimensional Doppler.

Results 80 patients age <35 weeks were divided into three groups.

Mean body weight was 1066±150.5 g; 1280±115.95 g and 2720±420.92 g.

Mean gestational age is: 28.7±1.78; 30.3±0.95 and 33.90±0.99.

The mean diameter of the main branch of the pulmonary artery is: 5.64±0.6; 6.16±0.37 and 8.5 mm±1.06.

The mean maximum flow rate through the main branch of the pulmonary artery (m/s): 1.48±0.74; 1.58±0.24 and 1.72±0.21.

Conclusion By comparison of dimension values and flow rate through the pulmonary artery we have proved that type of oxygen support has no influence on the diameter and flow speed through the pulmonary artery in preterm infants <35 weeks of gestation.

Background and Aim Survival after premature birth and neonatal lung disease is nowadays almost universal. To determine the long-term health outcomes for these infants, cardio-respiratory follow-up is needed. Whereas normative reference data for lung function in children exists, reference data of cardiac structure and function are at large lacking. The aim of this study was to determine right heart dimensions, volumes and function in healthy preschool children using echocardiography. We also wanted to compare right heart dimensions from 2D-images with volumes obtained from 3D-full volume single-beat echocardiographic measurements.

Methods Forty-one healthy children (23 boys) aged 6 years, mean weight=24.1±4.3kg and mean height=121.9±4.3cm, were assessed with echocardiography (Acuson SC2000, Siemens). Using 2D-echocardiography, we measured right ventricular (RVmajor/ minor) and right atrial diameters (RA major/minor). Using pulsed waved Doppler tissue imaging we calculated the E/e’-ratio and the Tei-index. With 3D-echocardiography we also calculated volumes for the right ventricle (RVEDV, RVESV) and atrium (RAEDV, RAESV), as well as ejection fraction (EF) for RV.

Results The RVmaj was 59.0±3.7mm, RVmin 29.9±3.1mm, RVEDV 42.5±7.5ml, RVESV 18.9±3.4ml, RAmaj 35.3±6.9mm, RAmaj 32.0±3.1mm, RAEDV 6.5±2.4ml, RAESV 15.8±4.3ml, E/e’ ratio 3.5±0.7, RV Tei-index 0.36±0.09 and RVEF 56 (95% CI 51-61) %. The length of right ventricle (RVmaj) measured with 2D correlated significantly with 3D estimated volumes (RVEDV, r=0.45, p<0.01). Right heart volumes correlated positively with BMI; RVEDV(r=0.61, p<0.001), RVESV(r=0.62, p<0.001), RAEDV(r=0.72, p<0.001) and RAESV(r=0.48, p<0.01).
Conclusion These reference data on right ventricular and atrial dimensions and volumes can be used for follow-up studies of boys and girls at 6-years-of-age. 3D volumes correlated moderately with BMI.

EFFECT OF A PILOT INTERVENTION ON SETTING UP LONG-TERM MECHANISM OF NEONATAL RESUSCITATION TRAINING IN 4 COUNTIES IN CHINA

1 Xu, J, X Jin, H Wang, L Gong, X Zheng, G Yu, G Xu, P Zhang. ‘National Center for Women and Children’s Health, China CDC, Beijing; 2Shandong Provincial Health Bureau, Jinan; 3Heilongjiang Provincial Health Bureau, Harbin; 4Heilongjiang Maternal and Child Health Care Center, Harbin; 5Shandong Maternal and Child Health Care Center, Jinan, China

Background and Aims Neonatal mortality is the leading cause of under-5 child deaths in China. The aim was to evaluate the effect of a pilot intervention on setting up long-term mechanism of neonatal resuscitation training in 4 counties in China.

Methods A neonatal resuscitation leading group was set up within each county level hospital to lead the in-hospital training, department coordination, resuscitation practices and cases audit. A random control survey was conducted in the intervention counties and 4 randomly selected control counties to evaluate the impact of the intervention. Indicators evaluated include knowledge and self-confidence score of health providers, in-hospital regulations, changes of asphyxia incidence and mortality.

Results Over 90% of intervention hospitals had carried out neonatal resuscitation related regulations requiring that trained paediatricians participate in case discussion of high-risk delivery and onsite resuscitation, while in control hospitals less than 55% had such requirements. The average knowledge score of health providers was significantly higher in the intervention counties than the control counties (9.1±2.18 VS 8.4±2.32). The average self-confidence score in the two groups were 57.3±3.4 and 54.0±5.3 respectively. The incidence of birth asphyxia (defined as Apgar score<7) decreased from 8.83% to 5.99% in the intervention counties, and the intrapartum-related deaths in the delivery room decreased from 27.60 to 5.03 per 100,000. No significantly changes were found in the control counties.

Conclusions Setting up long-term mechanism of neonatal resuscitation training is an effective method to strengthen in-hospital training, build up capability for neonatal resuscitation and therefore, can decrease the incidence of neonatal asphyxia.

THE DIAMETER OF CORONARY ARTERIES IN HEALTHY NEWBORNS AT BIRTH, ONE AND SIX MONTHS OF AGES

1 BS Karagol, UA Orun, A Zarcinoglu, N Okumus, N Karadag, A Dursun, AA Kudak, S Karademir. Dr. Sami Ulus Maternity, Children’s Education and Research Hospital, Division of Neonatology; Dr. Sami Ulus Maternity, Children’s Education and Research Hospital, Division of Pediatric Cardiology, Ankara, Turkey

Objective The aim of this study was to determine accurate and validated z-score equations for the normal values of coronary diameters adjusted with growth changes of the neonates by testing three different time periods.

Methods Echocardiography was performed on 200 healthy neonates at birth, one and six months of ages. Several regression models for the left (LCA) and right coronary artery (RCA) diameters were tested with weight, height, body surface area and aortic annulus diameter. Reliable standards for the coronary artery diameters for healthy newborns by determining z-score equations with appropriate statistical validations were established.

Results The coronary diameters on birth measurements were strongly correlated with birth weight, height, surface area and the diameter of the aortic annulus (Pearson’s R>0.8, all p<0.01). There were significant associations between the mean data of weight, height, body surface area, aortic annulus and the LCA and RCA diameters measurements of study subjects at birth, one and six months of ages (p<0.05).

Conclusion We present a new set of equations for neonatal z-score calculation on the basis of a large number of healthy neonates on three different time period consisting of birth, one and six months of ages. It is clear with this study that the growth in caliber of the coronary arteries is definite and progressive during postnatal time.

SAFEGUARDING THE BRAINS OF OUR SMALLEST CHILDREN: SAFEBOOSC – THE PILOT STUDY

1 S Hyttel-Sørensen, 7 T Austin, 4 M Benders, 6 O Claris, 8 G Dempsey, 5 M Fumagalli, 1 C Gloud, 9 H Hagman, 5 H Helleström-Westas, 9 L Lemmers, 6 G Naulaers, 11 A Pellicer, 6 G Pichler, 8 L Saem Støy, 1 F van Bel, 1 W van Oeveren, 1 M Wolf, 10 G Greisen, 10 K Katholike Universiteit Leuven, Department of Neonatology, Leuven, Belgium; 2Wilhelmina Children’s Hospital, Department of Neonatology, Utrecht, The Netherlands; 3Hospices Civils de Lyon, Department of Neonatology, Lyon, France; 4University College Cork, Department of Neonatology, Cork, Ireland; 5Università di Milano, Department of Maternal and Pediatric Sciences, Milan, Italy; 6Copenhagen Trial Unit, Rigshospitalet, Copenhagen, Denmark; 7Rosie Maternity Hospital, Department of Paediatrics, Cambridge, UK; 8University Hospital Zurich, Clinic of Neonatology, Zurich, Switzerland; 9University Hospital Uppsala, Department of Neonatology, Uppsala, Sweden; 9Katholieke Universiteit Leuven, Department of Neonatology, Leuven, Belgium; 10Paediatric Hospital, Department of Neonatology, Madrid, Spain; 11Medical University of Graz, Department of Paediatrics, Graz, Austria; 12Haemogenesis B.V., Groningen, The Netherlands; 13University Hospital Zurich, Biomedical Optics Research Laboratory, Zurich, Switzerland; 14University Hospital, Department of Neonatology, Copenhagen, Denmark

Background and Aims The SafeBoosC project aims to test the benefits and harms of cerebral near-infrared spectroscopy (NIRS) oximetry in infants born before 28 weeks of gestation. A phase II trial will randomise infants to cerebral NIRS oximetry and a treatment guideline during the first 72 hours of life or standard care with blinded NIRS-monitoring. The primary outcome is the area (burden) outside the normal ranges of rStO2 of 55 to 85%.

Methods This pilot of the experimental group included 10 infants using the INVOS 5100C and NONIN EQUANOX 7600.

Results Median gestational age was 26 weeks ± 3 days. Median start-up time was 133 minutes after delivery. Median recording time was 69.7 hours. Mean rStO2 was 64.2 ± 4.5%. Median burden of hyper- and hypoxia was 30.3% hours (range 2.8–112.3). Clinical staff responded to out of range values 29 times – once was it to a value above 85%. In comparison, there was 83 periods of more than 10 minutes with rStO2 below 55% and four episodes with rStO2 above 85%. These periods accounted for 72% of the total burden of hypoxia. 18/29 of interventions were adjustments of FiO2 that 18 of 18 times resulted in an out of range SpO2. Two infants suffered burns.

Conclusions Early cerebral NIRS monitoring proved feasible, but prolonged periods of hypoxia went untreated, while adjustment of FiO2 often would result in SpO2 out of local target range. This points to a less than perfect implementation of the treatment guideline.

PREDICTORS OF DUCT DEPENDENT CONGENITAL HEART DISEASE IN INFANTS TRANSFERRED BY NEWBORN EMERGENCY TRANSPORT SERVICE (NETS) VICTORIA

1 N Gupta, 1 COF Kamlin, 2 M Stewart, 3 M Cleeve, 4 N Patel. Neonatal Unit, John Radcliffe Hospital, Oxford, UK; 5Newborn Emergency Transport Services (NETS), Royal Children Hospital; 6Department of Newborn Research, Royal Women’s Hospital;