MMP-9) revealed changes in protein expression between asphyxia and control cases.

Conclusion Placental biopsies collected at up to 90 minutes after delivery show stable gene and protein expression and may provide useful early biomarkers in NE.

1063 CEREBELLAR AND THALAMIC GROWTH IN PRETERM INFANTS IN RELATION TO BIRTH WEIGHT (BW)

doi:10.1136/archdischild-2012-302724.1063

Background Reduced cerebellar/thalamic growth affects neurodevelopment. The exact mechanisms are unknown.

Aims To compare cerebellar/thalamic growth of preterms in relation to BW and weight at 36 weeks corrected (W36).

Methods Retrospective matched cohort-analysis: 4 BW groups matched for maternal smoking, chorioamnionitis, antenatal steroids, delivery mode, multiples and gender.

Exclusions growth restriction, congenital anomalies.

Study Variables (table1) gestational age (GA), BW, W36, head circumference at birth/36 weeks (HC/HC36), transverse cerebellar/thalamic diameter at birth/36 weeks (TCD/TDD), MMP-9 levels.

Confounding variables ventilation days (V), oxygen requirement 36 weeks corrected (O2), postnatal steroids (PS), NEC, days antibiotic treatment (ABX), days parenteral nutrition (TPN), phototherapy, IVH, PVL.

Statistics median (quartiles, 25th/75th), Friedman-/Cochran-Test.

Results Cerebellar growth is more resilient than thalamus or cerebrum to the negative effects of established risk factors for poor neurodevelopmental outcome.

Conclusion Preliminary results of the first 13 infants included are presented. Seven had positive EV PCR in CSF and serum, 6 tested positive in serum only. None showed seizures or abnormal neurological examination at admission. Cerebral ultrasound was performed in 12/13 infants and showed no abnormalities. Cerebral MRI was performed in 10/13 infants; one showed diffuse white matter abnormalities in the frontal and occipital lobe. Hearing screening was normal in all infants. Neurological examination 4–6 weeks after infection showed slight hypertonia of the lower extremities in one infant. At 6 months of age all infants had normal neurologic examination.

Conclusion At 4–6 weeks following EV infection cerebral white matter abnormalities were found on MRI in one infant, whereas a slight hypertonia of the legs was found in another. At 6 months of age neurological examinations were normal in all infants. The long term implications of our findings are unclear.

1064 NEUROLOGICAL INVOLVEMENT OF ENTEROVIRUS INFECTION IN YOUNG INFANTS WITH SEPSIS-LIKE ILLNESS

doi:10.1136/archdischild-2012-302724.1064

Introduction Enterovirus (EV) infection is common in young infants. Amongst those requiring intensive care seizures and cerebral white matter abnormalities with serious neurologic sequelae have been reported. We questioned whether similar neurologic features occur in less seriously ill infants with EV infection.

Methods From August 2011 onward we included children under 90 days of age, admitted to a medium care unit with sepsis-like illness due to EV infection but not requiring intensive care. Cerebral ultrasound imaging was performed during hospital stay, cerebral MRI and hearing screening 4–6 weeks post-infection. During all visits neurological examination was performed and developmental milestones determined.

Results Preliminary results of the first 13 infants included are presented. Seven had positive EV PCR in CSF and serum, 6 tested positive in serum only. None showed seizures or abnormal neurological examination at admission. Cerebral ultrasound was performed in 12/13 infants and showed no abnormalities. Cerebral MRI was performed in 10/13 infants; one showed diffuse white matter abnormalities in the frontal and occipital lobe. Hearing screening was normal in all infants. Neurological examination 4–6 weeks after infection showed slight hypertonia of the lower extremities in one infant. At 6 months of age all infants had normal neurologic examination.

Conclusion At 4–6 weeks following EV infection cerebral white matter abnormalities were found on MRI in one infant, whereas a slight hypertonia of the legs was found in another. At 6 months of age neurological examinations were normal in all infants. The long term implications of our findings are unclear.

Abstract 1063 Table 1

<table>
<thead>
<tr>
<th>GA(weeks)</th>
<th><1000g(N=14)</th>
<th>1000–1499g(N=17)</th>
<th>1500–2499g(N=8)</th>
<th>≥2500g(N=46)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW(g)</td>
<td>26(25–27)</td>
<td>30(28–31)</td>
<td>31(31–32)</td>
<td>39(38–40)</td>
<td><0.001</td>
</tr>
<tr>
<td>HC(cm)</td>
<td>76(56–85)</td>
<td>1200(110–130)</td>
<td>1670(1573–1765)</td>
<td>3345(2814–3668)</td>
<td><0.001</td>
</tr>
<tr>
<td>TCD(cm)</td>
<td>2.4(2.3–2.7)</td>
<td>3.2(2.7–3.4)</td>
<td>2.9(2.6–3.5)</td>
<td>4.0(3.6–4.3)</td>
<td>0.002</td>
</tr>
<tr>
<td>TDD(cm)</td>
<td>1.8(1.7–2.0)</td>
<td>2.2(2.0–2.3)</td>
<td>2.4(2.2–2.9)</td>
<td>2.8(2.6–2.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>W36(g)</td>
<td>1702(1528–1850)</td>
<td>2050(1800–2200)</td>
<td>2250(2180–2350)</td>
<td>Not applicable</td>
<td><0.001</td>
</tr>
<tr>
<td>HC36(cm)</td>
<td>29.8(28.4–31.6)</td>
<td>32(31.0–32.6)</td>
<td>32.3(30.3–32.8)</td>
<td>Not applicable</td>
<td>0.001</td>
</tr>
<tr>
<td>TDD36(cm)</td>
<td>3.3(3.2–3.7)</td>
<td>3.6(3.1–3.4)</td>
<td>4.0(3.5–4.4)</td>
<td>Not applicable</td>
<td>0.072</td>
</tr>
<tr>
<td>TDD6(cm)</td>
<td>2.4(2.3–2.6)</td>
<td>2.4(2.3–2.5)</td>
<td>2.7(2.6–2.9)</td>
<td>Not applicable</td>
<td>0.028</td>
</tr>
</tbody>
</table>